
Targeting Risk; Volatility and Leverage Management

HangukQuant1, 2*

August 30, 2022

1 2

Interim Report

Abstract

A trader’s primary job is to identify edge and then execute them. In this paper we take

a preliminary look at risk management and implement two methods - volatility targeting and

leverage targeting. We make interesting observations and provide prelude to future discussions

in portfolio management.

1*1: hangukquant@gmail.com, hangukquant.substack.com
2*2: DISCLAIMER: the contents of this work are not intended as investment, legal, tax or any other advice, and

is for informational purposes only. It is illegal to make unauthorized copies, forward to an unauthorized user or to

post this article electronically without express written consent by HangukQuant.

1

Contents

1 Introduction 4

2 Facts & Empirical Facts 4

2.1 Moment Stickiness . 4

2.1.1 Strategy 1 . 6

2.1.2 Strategy 2 . 6

2.2 Geometric Wealth Maximization . 7

3 Risk Management 7

3.1 Volatility Targeting . 8

3.1.1 Variant 1 . 8

3.1.2 Variant 2 . 9

3.2 Leverage Targeting . 9

3.2.1 Variant 3 . 9

3.2.1.1 A Side Note: . 9

3.3 Differences in Volatility vs Leverage Targeting . 9

4 Code Implementation 10

4.1 Dynamic Asset Universe . 12

4.2 2-Play Strategies . 13

4.3 Alpha Testing . 14

5 Performance 21

5.0.1 Volatility Tracking . 22

5.0.2 Portfolio Effects . 22

6 Some Musings 23

2

7 Important Notes 24

7.1 Notes on Leverage . 24

7.2 Notes on Volatility Decomposition . 25

7.3 Notes on Time Taken . 26

7.4 Notes on Leveraged Wealth . 26

8 Note to Readers 28

3

1 Introduction

Portfolio management is a multi-variate goal. Some traders’ goal might be regulated by exogenous

pressures such as investor preference and fund mandate. Some traders’ goal is to achieve the highest

possible risk-adjusted returns. Some traders only considers the terminal wealth; others are path

dependent. Wealth drawdown and duration of under-performance is a concern for many. Portfolio

management can be applied at the portfolio level, strategy level and asset level. Different (& often

similar) techniques may be applied at each level of management.

We reduce the dimensionality of our problem and only consider the risk-management at the

strategy level. We ignore their diversification effects on the overall portfolio and study a univariate

strategy portfolio consisting of many assets. We intentionally keep our study simple as a prelude

to further discussions and explore other issues in the future. Our implementation compares two

variants of volatility targeting and one of leverage targeting. Python code is demonstrated.

2 Facts & Empirical Facts

2.1 Moment Stickiness

The different return moments have different stickiness. Some cluster and others do not. Stickiness

of moments determine whether market observables are useful in predicting future randomness.

If information today carries no value in predicting variables for tomorrow, then it is likely that

including estimations of said variable in an alpha/risk model would lead to noisy results. We take

a look. We consider 2 strategies, asset universe from GSPC index constituents with data from Jan

1 2010 to Jan 1 2020. Let’s first treat the strategies as black boxes, and we use the strategy daily

returns as our experimental time series. We discuss the play-strategies later in the paper.

In order to see if there is autocorrelation (information) in today’s variables about tomorrow,

we can create autocorrelation plots using (partial) ACF functions. We test up to 3∆ lag of return

moments up to the 4th. In addition, we can get their (un)likelihoods with p-values obtained from

Ljung-Box, with indication that time-series is autocorrelated if the p-value is lower than some α

significance.

4

Figure 1: A Single Trial of Strategy Run: ACF Plots (Confidence Bands) - Return Moment µ1..4

We consider 2 strategies. For each strategy, we implement 3 risk control variants and run 13

trials by randomly sampling 100 tickers from the GSPC dataset. The details are not important

here, but rather we want to see the difference in moment distributions. For each of the 39 runs,

we run ACF and Ljung-Box and test what percentage of the time-series return moments exhibit

memory.

5

2.1.1 Strategy 1

p\µk k = 1 k = 2 k = 3 k = 4

p ≤ 0.05 3 39 5 7

p ≥ 0.05 36 0 34 32

p̄ 0.42 0.00 0.38 0.40

Table 1: Strategy 1, Summary of Auto-correlation Tests (Ljung-Box)

2.1.2 Strategy 2

p\µk k = 1 k = 2 k = 3 k = 4

p ≤ 0.05 9 39 19 22

p ≥ 0.05 30 0 20 17

p̄ 0.35 0.00 0.22 0.18

Table 2: Strategy 2, Summary of Auto-correlation Tests (Ljung-Box)

We see clearly that the second moment of return series µ2 is auto-correlated. All 39 trials (com-

binations of assets and risk management variants) on both strategies mathematically verfies that

volatility ‘clusters’, not only on asset returns but also on portfolio returns. This is fairly intutive,

a portfolio/strategy trades assets, and if underlying asset has volatility clusters then so would the

portfolio. This is followed by the fourth moment, the third moment and the first moment. In

increasing fashion, auto-correlative exhibits in order of µ2, µ4, µ3, µ1.

A more important inference might be that when we are doing risk-modelling, our risk model

should take into consideration the more ‘informational’ moments as inputs. Including moments

which carry less information about the future introduces noise to our risk management since the

future will have no memory about the related variables.

6

2.2 Geometric Wealth Maximization

Many would be tempted to stop reading the paper upon reading this line - we assume normality of

returns. We are not particularly interested in satisfying market assumptions yet. Our focus is on

comparison of the different approaches (which may later be refined to relax these assumptions for

practical usage) and how they measure up. Then the assumption states that the wealth distribution

is log-normal, with geometric mean
(
µ− σ2

2

)
(see Hull). The variance drag is the σ-penalty term.

Under leverage factor L, this term evaluates to
(
Lµ− (Lσ)2

2

)
, and the first order derivative w.r.t L

yields
(
µ− Lσ2

)
and our optimal leverage equals µ

σ2 . We may relax the normality assumptions and

perform similar analysis to obtain leverage under considerations of non-trivial skew and kurtosis.

3 Risk Management

Risk management roughly applies to (i) ‘how much of our capital should we allocate to a strategy’

and (ii) ‘how much of our capital should we allocate to an asset’?. There is extensive literature on

these topics. We explore 2 main options for (i) and consider 1 for (ii).

Answering (ii): Suppose we are trading an effect that is harvested by trading a basket

of assets. Each asset is labelled an alpha score representing their return-expectation relative to

other assets in the basket as computed by the strategy. This can be generalized to different

strengths of alpha, but assume unit alpha-measure such that their return expectancy is labelled

±1, 1 representing we want to long the asset and −1 representing short. A reasonable approach

would be to take position sizing inverse to their dollar volatilities, such that the each forecast

estimate affects the portfolio’s future capital by roughly the same amount. If an asset A is half as

volatile as asset B and their return expectation is the same, we want to bet twice in A as we did

in B, such that if we were right in one bet and wrong in the other, we would end up roughly the

same. This is reasonable assuming we have no reason to be more confident in one position than

the other. This is the approach we would adopt.

Answering (i): How much capital we want to allocate to a strategy depends on the trader’s

goal; whether it is to maximise terminal wealth, be aggressive or target a certain degree of variability

in their capital per unit time. We discuss some options.

7

3.1 Volatility Targeting

This is the method whereby the trader targets a certain level of volatility (variability) in his capital.

It is unlikely he can predict returns with high accuracy (or he would have been rich) but he can

control the degree to which his capital varies to a reasonable degree (by betting big or small). We

discussed this before, but an important rule of thumb is that our wealth (modelled as a Brownian

motion) gains quadratic variation per unit time. Equivalently volatility scales as a square root of

time. Assuming 253 trading days roughly per year, volatility computed at y% with daily returns

has annualized volatility estimate of
√
253 ∗ y%. For example, we may want to say ‘let volatility

(variability) of our portfolio returns to be about 15% per year’. We can then compute the desired

vol at the daily level by taking 15%/
√
253 and hope to scale our positions such that the standard

deviation of our daily returns match this value. We can do this on two separate levels to illustrate

where our risk is coming from. First, we can target this volatility level by dividing the capital we

have by the cardinality of our traded universe and bet in accordance to how much risk we want to

allocate to the position. However, by taking these decisions individually for each position without

taking into consideration other traded assets in the strategy, we would not be able to achieve

our target-ed level of volatility. We would systematically obtain lower volatility levels on the

overall portfolio returns as we did not take into consideration diversification effects and (possibly)

directionally opposite trades that neutralise market beta. Our two variants on volatility targeting

would implement a strategy-level scalar that compensates this volatility loss from diversification

effects. Both variants are actually quite similar but have implicit differences when implemented.

3.1.1 Variant 1

The first variant would be to take the empiricist approach. We do not have a model to compute

the strat-scalar. Instead, we first assign an arbitrary scalar, and start trading. We can then take

the market observables, which is our realised daily returns from the traded strategy and then

accordingly increase or decrease our scalar up to try to ‘hit’ our target. The steps are in high-level

(i) how much did our portfolio vary in the last x days, (ii) how much were we scaling when we

achieved those variability in the last x days, and (iii) so do we need to increase or decrease our

scalar from our baseline in (ii) to hit our target?

8

3.1.2 Variant 2

The second variant would be to compute forward-1 volatility with a volatility model such as

GARCH, EWMA etc and then deciding our scalar as our volatility target divided by our esti-

mate. We would implement the EWMA model with λ = 0.94 as is commonly cited in practice (by

RiskMetrics). For those who do not have experience with volatility estimations, Google time-series

volatility prediction. We would not spare time covering such a common topic. We also ignore the

subtle differences between the time-series models, they are all somewhat similar and it is likely that

the most stable out-of-sample is an ensemble. Our choice of EWMA was for speed considerations,

which (refer literature) is computed σ2
t = 0.06u2t + 0.94σ2

t−1 and can be computed with an on-line

update as opposed to rolling computations. The space and time requirement is also constant,

while other methods require the entire array of values for the look-back period/scale linearly with

lookback-window length.

3.2 Leverage Targeting

3.2.1 Variant 3

Recall in Section 2.2 that in the continuous return space, there is volatility drag and high levels of

variance (which scales with leverage) can affect performance. We then found the optimal leverage

is µ
σ2 - but also noted in the earlier discussion that µ, the first return moment has little memory,

and therefore might introduce noise to our risk model. We take a look at its implementation and

briefly see how it performs.

3.2.1.1 A Side Note: when implementing this in practise, the return factor is too noisy such

that the leverage would have significant ranges. We cap the leverage from both sides, so that we

would not end up with unreasonable leverage values.

3.3 Differences in Volatility vs Leverage Targeting

Note that other than the obvious differences between the two risk management approaches, one is

ex-ante and the other is ex-post. With vol-targeting, we are issuing a strategy scalar that impacts

9

leverage, while in leverage targeting we are first computing our relative allocations and fixing the

leverage for wealth maximisation.

4 Code Implementation

First, we begin by importing some custom libraries discussed before on HangukQuant. However,

these libraries have nothing to do with the implementation itself and can be replaced with your

own code. They have just been included such that our regular readers can reference them if needed.

We attempt to get a dict of OHLCV dataframes for a list of tickers from our database.

1 import asyncio

2 import random

3 import datetime

4 import numpy as np

5 import pandas as pd

6 import multiprocessing as mp

7 import matplotlib.pyplot as plt

8

9 #custom libraries

10 import general_utils as gu #simple I/O and pickling

11 import data_service.data_master as DM #from our data service paper

12

13 trade_start = datetime.datetime (2010 , 1, 1)

14 trade_end = datetime.datetime (2020 , 1, 1)

15

16 #get a dictionary of ohlcvs for instruments

17 async def batch_insert_ohlcv(loop , instruments):

18 LIMIT = 250

19 ohlcvs = {}

20 for i in range(0, len(instruments), LIMIT):

21 temp_insts = instruments[i : i + LIMIT]

22 temp_ohlcvs = await data_master

23 .get_equity_service ()

24 .asyn_batch_get_ohlcv(

25 tickers=temp_insts ,

26 exchanges=list(["US" for _ in range(len(temp_insts))]),

10

27 period_start=trade_start ,

28 period_end=trade_end ,

29 read_db=True ,

30 insert_db=True

31)

32 for i in range(len(temp_insts)):

33 ohlcvs[temp_insts[i]] = temp_ohlcvs[i]

34 return ohlcvs

We do some set up to generate random 100-len asset universe for 3 studies each on 13 trials

for our testing purposes. We use the Alpha object, which is the core of our backtesting engine.

1 if __name__ == "__main__":

2 load_disk = True

3 data_master = DM.DataMaster ()

4 res = data_master.get_basket_service ().get_index_components("GSPC")

5 instruments = list(res.Code)

6 if not load_disk:

7 loop = asyncio.get_event_loop ()

8 ohlcvs = loop.run_until_complete(batch_insert_ohlcv(loop , instruments))

9 gu.save_file("ohlcvs.pickle", ohlcvs)

10 else:

11 ohlcvs = gu.load_file("ohlcvs.pickle")

12

13 for inst in instruments:

14 if ohlcvs[inst] is None or len(ohlcvs[inst]) == 0:

15 print(inst)

16 del ohlcvs[inst]

17 else:

18 ohlcvs[inst]. set_index("datetime", inplace=True)

19

20 random.seed (1)

21 trial = 0

22

23 while trial < 13:

24 print("trial :", trial)

25 instruments = random.sample(list(ohlcvs.keys()), 100)

26 print("performing study with size -{} universe".format(len(instruments)))

11

27 alphas = [Alpha(

28 instruments=instruments ,

29 dfs=ohlcvs ,

30 configs ={

31 "start" : trade_start ,

32 "end": trade_end ,

33 "longsize": 33,

34 "shortsize": 33,

35 "study": i

36 }) for i in range(1, 4)]

37

38 def run_strat(alpha):

39 portfolio_df = alpha.run_simulation ()

40 return portfolio_df

41

42 with mp.Manager () as manager:

43 with mp.Pool(mp.cpu_count ()) as pool:

44 records = pool.map(run_strat , alphas)

45

46 gu.save_file("{}_.pickle".format(trial), (instruments , records))

47 trial += 1

Before we introduce the core of our backtesting engine, we discuss some testing quirks and

introduce the 2 play-strategies.

4.1 Dynamic Asset Universe

Firstly, we don’t know that our dataset consists of OHLCVs that span the entire period. Some

assets might only have been listed halfway though the testing period, while others might have

halted trading in the middle. We also don’t know that their traded days are uniform (for instance

FX trading holidays are different NYSE holidays). We fix this with a simple trick: we know that

the calendar dates are invariant across assets traded - we create a date range from the start date

to end date and ‘slot’ our OHLCV measurements into the corresponding dates. Note that this

would create empty rows for which we do not have measurments, such as weekends or when the

asset ceased to exist/trade for that period. We then use a simple heuristic to filter out the actively

12

traded stocks: by labelling a measurement as a valid ‘sample’ if the close of that day is different

from the prior sample. If there are continuous stretches of 5 or more dates where our samples are

not varying, then we flag them as inactive and exclude them from our traded universe. Excluding

inactive stocks from our asset universe is important - since their randomness degenerates and the

volatility of their returns go to zero; taking positions inversely proportional to their volatility sends

positions to infinity.

This quick and dirty trick however is not cost-less, we need to ensure that it does not affect the

implementation of our strategy and risk management. By doing a naive σ2
t = 0.06u2t +0.94σ2

t−1 the

u2t would evaluate to 0 when t is a corresponding weekend or market holiday. This would cause our

σ2
t to decrease systematically over trading breaks (and hence systematically increase position sizing

on Mondays/after holidays) and cause a ‘Sizing Weekend Effect’. In order to prevent this quirk, we

need to forward fill our volatility estimates when we know that our portfolio has not been traded

on that date. The same applies to our volatility calculation for individual asset returns that are

used in our risk control - we need to forward fill volatility computations before forward fill-ing the

closing prices (for instance, line 15 in the code below comes before line 21). Other computations

such as computing performance statistics need a similar adjustment.

4.2 2-Play Strategies

The first is a ∆1-scaled mean reversion, encoded

’div(minus(open , close) , minus(high , low))’

and the next is a generic cross-sectional 1-Y momentum strategy.

1 """

2 Strategy 1

3 """

4 self.dfs[inst]["alpha"] =

5 (self.dfs[inst]["open"] - self.dfs[inst]["close"])

6 / (self.dfs[inst]["high"] - self.dfs[inst]["low"])

7

8 """

9 Strategy 2

10 """

13

11 self.dfs[inst]["alpha"] =

12 -1 +

13 self.dfs[inst]["adj_close"]

14 / self.dfs[inst]["adj_close"]. shift (365)

We are not really concerned about their attractiveness - obviously there are trivial assumptions

that do not follow practical trading considerations. For instance, assuming fill on close is not

feasible, but for our demonstrations these would be assumed away.

4.3 Alpha Testing

And most importantly:

1 class Alpha():

2

3 def __init__(self , instruments , dfs , configs):

4 self.instruments = instruments

5 self.dfs = dfs

6 self.configs = configs

7

8 def get_trade_datetime_range(self):

9 return (self.configs["start"], self.configs["end"])

10

11 def compute_metas(self , index):

12 for inst in self.instruments:

13 print(inst)

14 df = pd.DataFrame(index=index)

15 self.dfs[inst]["vol"] =

16 (

17 -1 + self.dfs[inst]["adj_close"]

18 / self.dfs[inst]. shift (1)["adj_close"]

19).rolling (30).std()

20 self.dfs[inst] = df.join(self.dfs[inst])

21 self.dfs[inst] = self.dfs[inst]

22 .fillna(method="ffill")

23 .fillna(method="bfill")

24 self.dfs[inst]["ret"] = -1 +

25 self.dfs[inst]["adj_close"] / self.dfs[inst].shift (1)["adj_close"]

14

26 self.dfs[inst]["sampled"] = self.dfs[inst]["adj_close"] !=

27 self.dfs[inst].shift (1)["adj_close"]

28 self.dfs[inst]["active"] = self.dfs[inst]["sampled"]

29 .rolling (5)

30 .apply(lambda x: int(np.any(x))).fillna (0)

31

32 """

33 Strategy 1

34 """

35 self.dfs[inst]["alpha"] =

36 (self.dfs[inst]["open"] - self.dfs[inst]["close"])

37 / (self.dfs[inst]["high"] - self.dfs[inst]["low"])

38

39 """

40 Strategy 2

41 """

42 self.dfs[inst]["alpha"] =

43 -1 +

44 self.dfs[inst]["adj_close"]

45 / self.dfs[inst]["adj_close"]. shift (365)

46

47 self.dfs[inst]["eligible"] =

48 (

49 ~np.isnan(self.dfs[inst]["alpha"]) &

50 self.dfs[inst]["active"] &

51 self.dfs[inst]["vol"] > 0

52)

53

54 def init_portfolio_settings(self , trade_range):

55 portfolio_df = pd.DataFrame(index=trade_range)

56 .reset_index ()

57 .rename(columns ={"index" : "datetime"})

58 portfolio_df.loc[0, "capital"] = 10000

59 portfolio_df.loc[0, "ewma"] = 0.001

60 return portfolio_df

61

62 def compute_eligibles_and_comp(self , date):

15

63 eligibles = [inst for inst in self.instruments

64 if self.dfs[inst].loc[date , "eligible"]

65]

66 non_eligibles = [inst for inst in self.instruments

67 if not self.dfs[inst].loc[date , "eligible"]

68]

69 return eligibles , non_eligibles

70

71 def get_lever(self , portfolio_df , instruments , date , idx , nominal_tot ,

leverage , lookback):

72

73 nominal_ret_hist = portfolio_df [:idx]["nominal ret"]

74 .replace(0, np.nan)

75 .dropna ()

76 .tail(lookback)

77

78 if len(nominal_ret_hist) == lookback:

79 sigma = nominal_ret_hist.std()

80 lever = max(0.5, nominal_ret_hist.mean() / (sigma **2))

81 lever = min(10, lever)

82 leverage_scalar = lever / leverage

83 for inst in instruments:

84 newpos = portfolio_df.loc[idx , "{} units".format(inst)]

85 * leverage_scalar

86 portfolio_df.loc[idx , "{} units".format(inst)] = newpos

87 return nominal_tot * leverage_scalar

88 else:

89 return nominal_tot

90

91 def get_strat_scaler(self , portfolio_df , lookback , portfolio_vol , idx , default

, study =1):

92

93 if study == 1:

94 capital_ret_hist = portfolio_df [:idx]["capital ret"]

95 .replace(0, np.nan)

96 .dropna ()

97 .tail(lookback)

16

98 strat_scalar_hist = portfolio_df["strat scalar"]

99 .loc[capital_ret_hist.index]

100 if len(capital_ret_hist) == lookback:

101 ann_realized_vol = capital_ret_hist.std() * np.sqrt (253)

102 scalar_hist = np.mean(strat_scalar_hist)

103 strat_scalar = scalar_hist * portfolio_vol / ann_realized_vol

104 return strat_scalar

105 else:

106 return default

107 elif study == 2:

108 ann_realized_vol = np.sqrt(portfolio_df.loc[idx - 1, "ewma"] * 252)

109 return portfolio_vol / ann_realized_vol

110 else:

111 pass

112

113 def get_pnl_stats(

114 self ,

115 date ,

116 prev ,

117 portfolio_df ,

118 instruments ,

119 idx ,

120 historicals ,

121 close_col="adj_close"

122):

123 day_pnl = 0

124 nominal_ret = 0

125 for inst in instruments:

126 units_held = portfolio_df.loc[idx - 1, inst + " units".format(inst)]

127 if units_held != 0:

128 delta_price = historicals[inst].loc[date , close_col] -

129 historicals[inst].loc[prev , close_col]

130 inst_pnl = delta_price * units_held

131 day_pnl += inst_pnl

132 nominal_ret += portfolio_df.loc[idx - 1, inst + " w"]

133 * historicals[inst].loc[date , "ret"]

134

17

135 capital_ret = nominal_ret * portfolio_df.loc[idx - 1, "leverage"]

136 portfolio_df.loc[idx , "capital"] =

137 portfolio_df.loc[idx - 1, "capital"] + day_pnl

138 portfolio_df.loc[idx , "daily pnl"] = day_pnl

139 portfolio_df.loc[idx , "nominal ret"] = nominal_ret

140 portfolio_df.loc[idx , "capital ret"] = capital_ret

141 portfolio_df.loc[idx , "ewma"] = 0.06 * (nominal_ret **2) +

142 0.94 * portfolio_df.loc[idx - 1, "ewma"] \

143 if nominal_ret != 0 else portfolio_df.loc[idx - 1, "ewma"]

144 return day_pnl , nominal_ret

145

146 def run_simulation(self):

147 """

148 Settings

149 """

150 portfolio_vol = 0.20

151 trade_datetime_range = pd.date_range(

152 start=self.get_trade_datetime_range ()[0],

153 end=self.get_trade_datetime_range ()[1],

154 freq="D"

155)

156

157 """

158 Compute Metas

159 """

160 self.compute_metas(index=trade_datetime_range)

161

162 """

163 Initialisations

164 """

165 portfolio_df = self.init_portfolio_settings(

166 trade_range=trade_datetime_range)

167

168 for i in portfolio_df.index:

169 date = portfolio_df.loc[i, "datetime"]

170 strat_scalar = 2

171

18

172 eligibles , non_eligibles = self.compute_eligibles_and_comp(date=date)

173

174 if i != 0:

175 date_prev = portfolio_df.loc[i - 1 , "datetime"]

176 day_pnl , nominal_ret = self.get_pnl_stats(

177 date=date ,

178 prev=date_prev ,

179 portfolio_df=portfolio_df ,

180 instruments=self.instruments ,

181 idx=i,

182 historicals=self.dfs ,

183 close_col="adj_close"

184)

185 if self.configs["study"] in [1, 2]:

186 strat_scalar = self.get_strat_scaler(

187 portfolio_df=portfolio_df ,

188 lookback =30,

189 portfolio_vol=portfolio_vol ,

190 idx=i,

191 default=strat_scalar ,

192 study=self.configs["study"]

193)

194 portfolio_df.loc[i, "strat scalar"] = strat_scalar

195

196 alpha_scores = {}

197 for inst in eligibles:

198 alpha_scores[inst] = self.dfs[inst].loc[date , "alpha"]

199

200 alpha_scores = {k: v for k,v in

201 sorted(alpha_scores.items (), key=lambda pair: pair [1])}

202 alphalong = list(alpha_scores.keys())[-self.configs["longsize"]:]

203 alphashort = list(alpha_scores.keys())[:self.configs["shortsize"]]

204

205 for inst in non_eligibles:

206 portfolio_df.loc[i , "{} w".format(inst)] = 0

207 portfolio_df.loc[i , "{} units".format(inst)] = 0

208

19

209 nominal_tot = 0

210 for inst in eligibles:

211 forecast = 1 if inst in alphalong else 0

212 forecast = -1 if inst in alphashort else forecast

213 vol_target =1/(self.configs["longsize"]+self.configs["shortsize"])

214 * portfolio_df.loc[i, "capital"]

215 * portfolio_vol / np.sqrt (253)

216 dollar_vol = self.dfs[inst].loc[date , "vol"]

217 * self.dfs[inst].loc[date , "adj_close"]

218 position = strat_scalar * forecast * vol_target / dollar_vol

219 portfolio_df.loc[i, inst + " units"] = position

220 nominal_tot += abs(

221 position * self.dfs[inst].loc[date , "adj_close"]

222)

223

224 for inst in eligibles:

225 units = portfolio_df.loc[i, "{} units".format(inst)]

226 nominal_inst = units * self.dfs[inst].loc[date , "adj_close"]

227 inst_w = nominal_inst / nominal_tot

228 portfolio_df.loc[i, "{} w".format(inst)] = inst_w

229

230 if nominal_tot > 0 and self.configs["study"] == 3:

231 nominal_tot = self.get_lever(

232 portfolio_df=portfolio_df ,

233 instruments=self.instruments ,

234 date=date ,

235 idx=i,

236 nominal_tot=nominal_tot ,

237 leverage=nominal_tot / portfolio_df.loc[i, "capital"],

238 lookback =30

239)

240

241 portfolio_df.loc[i, "nominal"] = nominal_tot

242 portfolio_df.loc[i, "leverage"] = portfolio_df.loc[i, "nominal"]

243 / portfolio_df.loc[i, "capital"]

244 print(portfolio_df.loc[i])

245

20

246 return portfolio_df

5 Performance

First and foremost, how well did our risk management strategies track target volatility? We compare

variant 1 and variant 2 of volatility targeting measure on both strategies.

Figure 2: Example Run of Our 3 risk-variants, we see that the volatility targeting variants track

each other fairly closely.

21

5.0.1 Volatility Tracking

Variant.Strategy 1.1 1.2 2.1 2.2

σ̄ 0.21 0.20 0.21 0.19

σ (σ) 0.001 0.001 0.003 0.004

Table 3: Summary of Realised vs Target Volatility (Trials: 13 * 4)

Both variants appear to track our volatility target closely, doing a good job of tracking our target

risk. Let’s consider its effect on portfolio returns.

5.0.2 Portfolio Effects

Variant.Strategy 1.1 2.1 3.1 1.2 2.2 3.2

¯Sharpe 0.59 0.47 0.65 0.16 0.24 −0.10

¯CAGR 0.11 0.08 0.14 0.01 0.03 −0.01

¯Rank 1.92 2.84 1.23 1.92 1.08 3.0

Table 4: Summary of Portfolio Returns with Risk-Variants

We show mean Sharpe over the trials, CAGR of the strategy returns under different risk variants

and terminal wealth ranks (∼ CAGR). Here, we see some interesting results. In the first strat-

egy (intraday momentum reversion), the leverage targeting approach produced the best CAGR

and Sharpe, while EWMA vol-targeting performed comparatively poorly. In the second strategy

(generic 12-M momentum), the EWMA variant performs best, with our leverage targeting variant

performing the worst.

22

6 Some Musings

The result was interesting for a few reasons - a priori I had the opinion that leverage targeting

would behave the worst out of the 3 in all cases, since it is a noisy factor. This was the case for

the second strategy but not in our first experiment. Secondly, the auto-correlative exhibits were

stronger for the first-moment in strategy 2, so in any case I expected that if leverage targeting was

beneficial, it would be more beneficial for the second strategy than the first strategy. I was wrong

on this. This needs a more extensive review - admittedly we took the ex post portfolio returns after

the risk variant was already applied; it would be a cleaner study to first study raw, unleveraged

portfolio return’s statistical properties, followed by studying how the risk variants transform the

distributions.

If I had to guess, in the first strategy we were trading an ‘effect’ that is short term mean-

reversion. This effect may be market regimental. In the second strategy, we were trading the

momentum ‘effect’ but the underlying alpha is less time-varying, such that we are actually trading

‘assets’. Applying a fast varying risk technique to a slow moving alpha might have introduced

significant noise relative to the underlying signal, harming the performance. Either way, it is

difficult to inference any reasonable conclusions from such a small sample - but this is worth a

further look in a more extensive, detailed paper studying thousands of alpha models. Perhaps

we should not dismiss even the fast decaying first moment when risk-modelling for

portfolio allocations.

23

Figure 3: Example Portfolio Leverage Time Series.

7 Important Notes

7.1 Notes on Leverage

Variant.Strategy 1.1 2.1 3.1 1.2 2.2 3.2

L̄ 6.24 6.26 5.73 3.62 3.28 5.17

¯σ(L) 1.97 2.33 4.65 1.27 1.50 4.60

Σ̄|Lt − Lt−1| 678 665 1566 336 292 1827

Table 5: Summary of Portfolio Leverage with Risk-Variants

24

The performance comparisons assume that the trades are friction-less. But trading costs are real.

We can proxy the relative trading costs by seeing the absolute changes in leverage over time. In

particular, if we are constantly levering up and down our whole market exposure, we are eating

market costs. We see that our EWMA variant suffers the least cost penalty, with the leverage

targeting suffering up to 6 times the approximate trading volume in nominal terms - this is expected

due to the return factor itself being jumpy. This is a significant penalty to the leverage targeting

method and favors our EWMA variant.

7.2 Notes on Volatility Decomposition

We can verify that the strategy scalar is the compensating scalar due to loss of risk/volatility from

diversification (imperfect correlation) and neutralising market beta. We already did the hard work

before. Running an alpha with long size 1 and short size 0 should allows us to run a trivial ‘buy

and hold’ strategy with the risk-management of our choice.

1 alpha = Alpha(

2 instruments=instruments [:1],

3 dfs=ohlcvs ,

4 configs ={

5 "start" : trade_start ,

6 "end": trade_end ,

7 "longsize": 1,

8 "shortsize": 0,

9 "study": 1

10 }

11)

Running the simulation as above should give a strategy scalar around 1 since there are no diver-

sification effects or cancelling of beta when a single asset is traded. The resulting strat scalar for

single asset hovers around 1 for the entire trading period, with a mean of 0.93.

We then see the strat scalar when multiple assets of directionally neutral trades are taken. We

see a consistently higher value, with mean of 3.55.

25

Figure 4: Strat Scalar with Single Asset (Left) and Multiple Assets (Right)

7.3 Notes on Time Taken

1 alpha = Alpha(

2 instruments=instruments [:1],

3 dfs=ohlcvs ,

4 configs ={

5 "start" : trade_start ,

6 "end": trade_end ,

7 "longsize": 1,

8 "shortsize": 0,

9 "study": 1 #vs 2

10 }

11)

We noted that the variant 2 (EWMA) is cheaper computationally than the variant 1. We run the

configuration as above on both variants and compare time for execution. Variant 1 took 26.188

seconds to complete, while Variant 2 took 20.337 seconds to complete. While this may not seem

significant yet, running this on only 6000 strategies would cost 100 minutes of difference in time

execution!

7.4 Notes on Leveraged Wealth

We can also verify the math on our leverage, that µ
σ2 approximately maximises our geometric wealth

(we only approximately display normality). With the same configurations on the single asset trial,

26

we compute

1 df = df.loc[df["capital ret"] != 0]

2 lev = df["capital ret"].mean() / df["capital ret"].std() **2

3 print(lev)

giving optimal leverage 3.74. We apply different constant-leverage targeting and observe the dif-

ference in terminal wealth.

Figure 5: Terminal Wealth against Leverage.

The relationships between terminal wealth and leverage shows that our math and code imple-

mentation behaves as expected. Obviously, we have the benefit of hindsight to verify that this is

the optimal leverage, but we would not be able to achieve this in practise (as we demonstrated) -

*cues GIF of Captain Hindsight.

27

8 Note to Readers

We originally had another discussion in mind when writing the pieces of code demonstrated here

- we intended to discuss the implementation of a robust, efficient testing engine. However, as we

typed up the code, we realised there were some interesting points of discussion, and after making

some interesting observations created a (interim) report.

While we did not explicitly discuss the Alpha class in detail, we intend to dive deeper into this

testing engine in the weeks/months to come. In particular, we believe that this is the minimum

requirement any systematic approach needs to address - the computation of edge, the relative

allocations of edge and the overall allocations of edge. However, we can do much better. We want

to decrease the latency between the birth of an hypothesis and evaluation of its merits by increasing

the robustness of our quant tools.

We intend to discuss in great detail (for paid readers) how to make this fundamentally ‘solid’

vanilla implementation into a high performance quant tool that we can use to test any trading ideas

within minutes and go from programmer to quant. We include discussions in code profiling, under

the hood optimizations, data buses, Cython-ic and JIT compilers to achieve C-like perfomances in

our Python application. We also want to include things like FX converters to allow us to trade

multi-FX products. As we mentioned, this year, another of HangukQuant’s objective is to go

beyond alpha discussions to talk about creating your own quantitative systems and tools to take

you to the next level in your quantitative journey. Look forward to seeing you there.

28

	Introduction
	Facts & Empirical Facts
	Moment Stickiness
	Strategy 1
	Strategy 2

	Geometric Wealth Maximization

	Risk Management
	Volatility Targeting
	Variant 1
	Variant 2

	Leverage Targeting
	Variant 3
	A Side Note:

	Differences in Volatility vs Leverage Targeting

	Code Implementation
	Dynamic Asset Universe
	2-Play Strategies
	Alpha Testing

	Performance
	Volatility Tracking
	Portfolio Effects

	Some Musings
	Important Notes
	Notes on Leverage
	Notes on Volatility Decomposition
	Notes on Time Taken
	Notes on Leveraged Wealth

	Note to Readers

