
Chapter 11

Portfolio Management

11.1 Introduction and Problem Settings

11.1.1 Returns

The chapter of portfolio management is concerned with the management of a basket of capital assets.

For instance, the price of a government bond or stock at time t can be denoted pt. This is an example of

a capital asset. The pnl of holding one unit of the asset at [t− 1, t) is πt = pt − pt−1. The price process

is a stochastic process. The price at any time t is then some initial condition plus a sum of profits,

pt = pl +
∑t
j=l+1 πj . If πt is IID with Eπt = µ,Var(π) = σ2, we call this drift and variance respectively

and the price process is random walk. Then the conditional mean E[Pt|P0] = P0 + tµ and conditional

variance is Var(Pt|P0) = σ2t. Continuous-time treatment of an asset price process sees asset prices as

(generalized) geometric Brownian motion (see Definition 113). We do not deal with continuous-time

treatment here.

We can define returns in many ways, and here we shall define some. The gross return, also known

as cumulative returns is simply Gt(k) =
Pt

Pt−k
, the ratio of prices over two periods. We assume positive

price processes, Gt(k) ≥ 0. The k period gross return is simply the product of 1-period gross returns

(or more generally, product of gross returns on non-overlapping periods). This is expressed Gt(k) =

Πki=1Gt−k+i(1). The net return is Rt(k) = Gt(k) − 1 = Pt−Pt−k

Pt−k
. The log return is rt(k) = logGt(k) =

log(Pt) − log(Pt−k). It is often true that we do not distinguish between net returns and log returns in

literature. The true relationship is

rt(k) = log(1 +Rt(k)) ≈ Rt(k), (789)

where the approximation is given by log(1 + x) ≈ x when x is small (here log is the natural log, ‘ln’)

. Their distinction is of little concern in practice when working on fine granularities of data. However,

when working with returns over longer day periods, this approximation does not necessarily hold. The

mathematics is simple but the implications are non-trivial. Log-returns are often favored - it is quite

well behaved over time. The k-period log return is additive over the 1-period log returns (again, any

non-overlapping period holds) such that rt(k) =
∑k
i=1 rt−k+i(1). Most often, we will not distinguish

between daily net returns and daily log return data and use them interchangeably.

We are interested in the economics of multiple assets. These assets put together form a portfolio.

Let there be p assets, and wi be the weight assigned to asset i ∈ [p]. A general portfolio allocation can

be denoted ∥w∥1 =
∑p
i |wi| = 1. If we are working with strategies, or positive return bearing assets, it
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makes sense to constrain our weight to positive values, such that ∀i, wi ≥ 0. Let it be the index for asset

i at time t. Then

Pt =

(
1 +

p∑
i=1

wiRit

)
Pt−1, (790)

Rt =
Pt
Pt−1

− 1 =

p∑
i=1

wiRit, (791)

rt = log(1 +

p∑
i=1

wiRit). (792)

The naive but highly useful assumption is that rt ∼ Φ(µ, σ2). Then log(Pt) − log(Pt−k) ∼ Φ(kµ, kσ2).

This is the discrete form statement for asset price processes driven by a Brownian motion. For continuous

time-treatments, see Definition (141). Log-normality is also obtained there. In particular, the asset price

is modelled

Pt = P0 exp

{(
µ− σ2

2

)
t+ σwt

}
, wt ∼ Φ(0, t). (793)

Often the portfolio returns are taken in relation to a benchmark. We call this excess returns. For

some asset price benchmark p′t, the excess returns are rt − r′t. Often the benchmark is set to the risk-

free rate. Cash rates or short-term (3M) Treasury rates are often used in literature when computing

Sharpe ratios. There are many objections. Firstly, benchmarks are arbitrary and choices are themselves

questionable. Secondly, most people live in the nominal world. When we talk about our portfolio returns

at a barbeque party, we say: ‘we made x% a year’. If you say: ‘I made y% net of YoY core CPI inflation’,

then feel free to benchmark the risk-free rate. Just don’t come to my party.

When growth rates (such as interest rates) are continuously compounded, we get nice approximations.

If for some small time period 1
n we compound at rate r

n , then after t periods we have

Pt = P0

(
1 +

r

n

)nt n→∞→ P0 exp(rt). (794)

These have applications in discounting future valuations of wealth, such as cash flows. When the rates

are allowed to be stochastic, then we get discount processes. See Definition 2023 for continuous time

treatments. It would not very important at this juncture.

11.1.2 Risk

Almost everything we want to know about portfolio management is with regards to estimating the true

distribution, or nature of rt. The first moment and second central moment (see Definition 40) for rt is

the expected return and variance respectively, namely

µ = Ert, σ2 = µ2 − µ2
1 = E[(rt − µ)2]. (795)

σ =
√
σ2 is known as standard deviation (statistics terminology), volatility (finance terminology) or

portfolio risk (trader terminology). There are many definitions of portfolio risk, but volatility is by

far the most commonly used. Some commonly used distributions in the study of returns are normal

distributions (Section 5.17.4), t-distribution (Section 5.17.7) and log-normal distributions (when rt is

exponentiated, see Section 5.17.6).

Result 13. If θ̂ − θ ∼ Φ(0, 1
nξ

2), then for any f(θ) with |f ′(θ)| <∞ we have

f(θ̂)− f(θ0) ∼ Φ

(
0,

1

n
(f ′(θ0))

2
ξ2
)
. (796)
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Lemma 14. With IID sample Yi, i ∈ [n], for µ̂ = Ȳ and σ̂2 = 1
n

∑n
i (Yi − Ȳ )2, then

√
n(µ̂− µ) ∼ Φ(0, σ2), (797)

√
n(σ̂2 − σ2) ∼ Φ(0, 2σ4), (798)
√
n(σ̂ − σ) ∼ Φ(0,

1

2
σ2) (799)

Proof. The first two results follow immediately from Definition 84. For the third statement, consider the

Taylor expansion of (σ̂2)
1
2 at σ2, expressed

σ̂ = (σ̂2)
1
2 ≈ (σ2)

1
2 +

1

2(σ2)
1
2

(σ̂2 − σ2) (800)

= σ +
1

2σ
(σ̂2 − σ2). (801)

Since (σ̂2 − σ2) ∼ Φ(0, 2σ
4

n ), apply Result 13 with f(x) = x, ξ =
√
2σ2 to get

σ̂ ∼ Φ

(
σ,

1

4σ2

(
1

n
2σ4

))
(802)

and we are done.

11.1.2.1 VaR, Conditional VaR

Definition 133 (Value at Risk). Recall the definition of random variable quantiles (see Definition 26).

Let the q quantile be denoted Qq(x). For continuous c.d.f we can also write Qq(x) = F−1(q). When the

random variable under concern is rt, then −Qq(X) is q VaR. Write

V aRq(X) = −Qq(X) = −max {x : F (x) ≤ q} . (803)

This is the minimum loss incurred in the worst q fraction of return samples.

Lemma 15 (Properties of VaR). Let X,Y be random variables, and λ > 0, c ∈ R. The following

properties are satisfied by VaR risk measures.

1. V aRq(X + c) = V aRq(X)− c.

2. X ≤ Y =⇒ V aRq(X) ≥ V aRq(Y ). VaR is consistent with first-order stochastic dominance.

3. V aRq(λX) = λV aRq(x).

In particular, V aRq(a+ bX) = bV aRq(X)− a when b > 0.

Proof. Proof for part 1. Write V aRq(X) = −Qq(X) is such that

P(X < Qq(X)) = q (804)

P(X + c < Qq(X) + c) = q (805)

but −Qq(X)− c is V aRq(X + c). For part 2, see

P(X < Qq(X)) = q (806)

P(X + (Y −X) < Qq(X) + (Y −X)) = q (807)

P(Y < Qq(X) + (Y −X)) = q (808)

but −Qq(X) +X − Y is V aRq(Y ). X − Y < 0 and the result follows.
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Exercise 100. For X ∼ Φ(µ, σ2) we know that for zq, the q-th quantile of Φ(0, 1), we have

P
(
X − µ
σ

< zq

)
= q (809)

P(X < µ+ zqσ) = q (810)

s.t. Qq(x) = µ+zqσ, V aRq(x) = −µ−zqσ. The same principle applies if we assume X ∼ tv-distribution
and so on. If we fit a distribution to rt, we can the find the VaR at arbitrary q using the estimated

parameters. If we have sufficient data, we can estimate based on empirical quantiles to high resolution

without making parametric assumptions. (see Definition 26).

Definition 134 (Conditional VaR, Expected Shortfall). Recall the definition of value-at-risk in Defini-

tion 133. This measured the minimum loss incurred. The expected shortfall measures the average loss

incurred in the worst q fraction of return samples instead, expressed

ESq(X) =
1

q

∫ q

0

V aRα(X)dα. (811)

Why conditional VaR? See

ESq(X) = −E[X|X < −V aRq(X)] (812)

= −1

q

∫ −V aRq(X)

−∞
xf(x)dx (813)

= −1

q

∫ −V aRq(X)

−∞
xdF (x) (814)

= −1

q

∫ q

0

F−1(α)dα α = F (x) (815)

=
1

q

∫ q

0

V aRα(X)dα. (816)

Lemma 16 (Properties of Expected Shortfall). It is easy to see using the results from Lemma 15 that

1. ESq(X + c) = ESq(X)− c, c ∈ R

2. X ≤ Y =⇒ ESq(X) ≥ ESq(Y ).

3. ESq(λX) = λESq(X). λ > 0.

11.1.2.2 Risk-Adjusted Returns

The portfolio manager is interested in returns, particularly in relation to risk. He should be interested

primarily in the Sharpe ratio, which is computed as the ratio of expected returns to volatility of returns.

Most often, the annualized Sharpe ratio is presented. Suppose daily returns rt are independent. Then

let R =
∑n
i ri. Then Var(R) =

∑n
i Var(ri) = nσ2

r and σR =
√
nσr. Suppose we have daily return data,

and let number of trading days in a year be 253, then the annualized Sharpe is computed

sharpe =
253 ∗ µr√
253 · σr

(817)

=
√
253 · µr

σr
. (818)

The reason why the Sharpe ratio is of primary concern can be outlined. It gives us the return measured

in units of volatility. Volatility can be acquired by leverage. A high Sharpe portfolio with low risk
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can be levered up to a desired level of volatility. For given level of volatility, the returns possible are

commensurate with the Sharpe ratio. As mentioned, some choose to use benchmarked returns. Others

criticize the Sharpe ratio all together. For the naysayers of Sharpe, I leave with you a quote (Paleologo

[5]):

committees have been formed; replacements have been suggested, including the

beautifully named ‘ulcer index’; recommendations have been ignored.

Titans of finance come and are quickly forgotten.

Volatility and Sharpe will stay in the foreseeable future.

We show important results in the confidence of sample statistics on Sharpe ratio observable on return

data from market trading.

Corollary 20 (Sharpe Ratio). We may estimate the Sharpe ratio by ŜR = µ̂
σ̂ with distribution

ŜR− SR ∼ Φ

(
0,

1

n

(
1 +

1

2
SR2

))
. (819)

The 95% confidence interval for the Sharpe Ratio is

ŜR = ŜR± 1.96

√
1

n

(
1 +

1

2
ŜR

2
)

(820)

This gives us the range of values for which a hypothesis testing for zero Sharpe would return statistically

(in)significant p-values.

Proof. By bivariate Taylor expansion arguments, we argued in Lemma 41 that the variance of ratio

R = Y
X is given by

Var(R) ≈ 1

µ2
x

(r2σ2
x̄ + σ2

ȳ − 2rσx̄ȳ) (821)

See from Result 14 that we have σ̂ ∼ Φ(σ, σ
2

2n ), and µ̂ ∼ Φ(µ, σ
2

n ). Ignoring the finite population correction

factor, we can write our bootstrap approximate of the Sharpe estimator variance

Var(SR) ≈ 1

σ̂2

(
SR2 σ̂

2

2n
+
σ̂2

n

)
σ̂ ⊥ µ̂ , Definition 84 (822)

=
1

n

(
1

2
SR2 + 1

)
(823)

and we are done.

11.2 A Basket of Assets

Assets are held in aggregate, and this is called a portfolio. The portfolio wealth process is observed

with respect to a basket of assets evolving over time. Market instruments are intricately related, and so

are the random variables representing the observables of interest. These random variables shall then be

studied with multivariate methods. In the general form, for X = (xi)i∈[p] random variables, the random

variables have c.d.f F (x1, x2 · · · , xp) = P(X1 < x1 <, · · ·Xp < xp). If there exists joint density, then

their relations are given by

P(X1 ∈ (a1, b1), · · ·Xp ∈ (ap, bp)) =

∫ b1

a1

· · ·
∫ bp

ap

f(x1, · · ·xp)dxp · · ·x1. (824)
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The mathematics of joint densities are discussed in Section 59. Of particular prevalence is the mul-

tivariate Gaussian distributions (see Definition 85). Recall that they are characterized completely by

their expectations and covariance matrix, which we denote here (µ,Σ). Refer to Definitions of random

variable expectations, covariance and correlation in Definitions 31, 44 and 44 respectively. In particular,

for p-column matrix Y = (Yi)
T
i∈[p] we have

E(Y ) = (EYi)Ti∈[p] = (µi)
T
i∈[p], (825)

Cov(Y ) = Σ = E
{
[Y − EY ][Y − EY ]T

}
. (826)

The covariance and correlation matrices are said to be semi-positive definite. More generally (obtained

by their definitions and using the transpose (AB)T = BTAT property):

EAY = AEY, Cov(AY ) = ACov(Y )AT . (827)

More generally, Cov(AY,BY ) = ACov(Y )BT . We can estimate the population covariance matrix with

the observed data. For observed Y , take

S =
1

n

n∑
l=1

(Yl − Ȳ )(Yl − Ȳ )T . (828)

To reduce the variance of this estimator, we may apply shrinkage methods while trading off for bias (see

Definition 111). For shrinkage value λ, the shrinkage (ridge) estimator can be written

S′ = (1− λ)S + λ1, (829)

where the λ choice is made by cross-validation. Other alternatives, such as the Ledoit-Wolf shrinkage

can be employed.

11.2.1 Computations for the Portfolio

For p assets with returnsR = (Ri)i∈[p], denote their expected returns and covariance as ri = ERi, Cov(R) =
Σ respectively. The portfolio is a linear combination of assets - let the weighting be denoted by (col-

umn) vector w, s.t the portfolio Rp has relation Rp = wTR. In the general case, ∥w∥1 = 1, but this

is usually
∑
wi = 1 (components are non-negative) in the strategy-allocation problem (since we would

not be trading a strategy with negative expected returns). By the relation given by Equation 827, the

portfolio’s expected returns, variance, volatility given by

rp = ERp = wTER, σ2
p = wTΣw, σp =

√
wTΣw. (830)

It follows that the portfolio Sharpe is given

SRp =
wT rp√
wTΣw

. (831)

Our objectives would be to maximise rp, minimize σp, or their ratio SRp. The efficient frontier curve

is the curve along non Pareto dominated solutions for w w.r.t to the first two objectives. In particular,

it is the set of solutions for w corresponding to (i) maximum rp for some target σp, or to (ii) minimum

σp for some target rp. To trade on this frontier would be an efficient approach - see otherwise that the

trader’s SRp would be lower.
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11.2.2 Elegant Mathematics, Poor Economics

We present the classical mathematical models of optimization. These are known as ‘Modern Portfolio

Theory’. There is nothing quite modern about these models, and no serious amount of capital are

managed by the mathematics presented herein. However, the advanced models of today would be

motivated by similar goals of optimization. The theory presented herein are the bedrock for evolutions

in portfolio theory.

We present the arguments here, assuming constraint
∑
wi = 1, with no short-constraints. This is to

simplify the mathematics under the settings of ‘soft’ constraints.

Exercise 101 (Global Minimum Variance). Assume p assets, with returns R = (Ri)
T
i∈[p] and covariance

Σ = (σij)i∈[p],j∈[p]. The global minimum variance portfolio is the portfolio Rp = wTR that solves

min
w
Cov(Rp) = wTΣw, (832)

s.t.
∑
p

wi = 1. (833)

Proof.

Cov(Rp) = wTΣw =

p∑
l

w2
l σ

2
l + 2

p∑
i<j

wiwjσij . (834)

Lagrangian for the problem is

L(w, λ) =

p∑
l

w2
l σ

2
l + 2

p∑
i<j

wiwjσij + λ(

p∑
l

wi − 1) = 0, (835)

with Lagrangian equations

δL(w, λ)

δwi
= 2

∑
j

wjσij + λ = 0, (836)

δL(w, λ)

λ
=
∑
i

wi − 1 = 0. (837)

This can be written by block matrix [
2Σ 1

1
T 0

][
w

λ

]
=

[
0

1

]
. (838)

Solving for the set of linear equations 2Σw = −λ1, 1Tw = 1, we get

w = −1

2
Σ−1λ1, (839)

1
Tw = −1

2
1
TΣ−1λ1 = 1. (840)

It follows that λ = −2 1
1TΣ−11

, with solution

w =
Σ−1

1

1TΣ−11
. (841)
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Exercise 102 (Markowitz Portfolios). The efficient portfolio is set up

max rp = wT r (842)

s.t. wTΣw = σ2
target &

∑
i

wi = 1. (843)

or

minCov(rp) = wTΣw (844)

s.t. wT r = rtarget &
∑
i

wi = 1. (845)

Proof. Solving the second optimization problem form, we get Lagrangian

L(w, λ1, λ2) = wTΣw + λ1(w
T r − rtarget) + λ2(w

T
1− 1), (846)

with Lagrangian equations

δL

δw
= 2Σw + λ1r + λ21 = 0 (847)

δL

δλ1
= wT r − rtarget = 0 (848)

δL

δλ2
= wT1− 1 = 0. (849)

Solving, we get (verify this)

w =
c− brtarget
ac− b2

Σ−1
1+

artarget − b
ac− b2

Σ−1r, (850)

where a = 1
TΣ−1

1, b = 1
TΣ−1r, c = rTΣ−1r.

Exercise 103 (Maximum Sharpe/Tangency Portfolio). Solve for

max
w

wT r

(wTΣw)
1
2

(851)

subject to wT1 = 1.

Proof. Optimization equation has Lagrangian

L(w, λ) =
wT r

(wTΣw)
1
2

+ λ(wT1− 1). (852)

The first order conditions are

δL

δw
= r(wTΣw)−

1
2 − (wT r)(wTΣw)−

3
2Σw + λ1 = 0, (853)

δL

δλ
= wT1− 1 = 0. (854)

Solving, (verify this) we get

w =
Σ−1r

1TΣ−1r
. (855)
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