
Chapter 3

Linear Algebra

Here we discuss concepts in linear algebra - notably the literature on this subject is divided into two

different schools. One introduces linear algebra as the mathematics and computation of multiply defined

linear equations. Here the focus is on teaching linear algebra as a tool for manipulation and compu-

tation in multi-dimensional spaces. Determinants are introduced early on, and focuses are on matrix

operations. The second approach is to treat matrices as abstract objects, laying focus to the structure

of linear operators and vector spaces. Determinants and matrices are only introduced later. Here we

provide both - the first will focus on the linear algebraic manipulation of matrices on finite-dimensional,

Euclidean spaces. The second treatment will focus on the underlying mathematics of the structure of

linear operators and their properties, including the mathematics in infinite dimensional vector spaces

and over complex fields. Some of these treatments and notes on Linear Algebra herein are adapted from

the texts from Ma et al. [6], Axler [1] and Roman [10].

3.1 Computational Methods in the Euclidean Space

3.1.1 Linear Systems

Definition 2 (Linear Equation). A linear equation is one in which for variables {x1, · · · , xn}, equation
takes form

n∑
i=1

aixi = b (2)

where ai ∈ R, i ∈ [n] and b ∈ R.

Definition 3 (Zero Equation). A zero equation is a linear equation (see Definition 2) where all i ∈
[n], ai = 0 and b = 0. That is,

0x1 + 0x2 + · · · 0xn = 0. (3)

The variables xi, i ∈ [n] in Definition 2 are not known and it is our task to solve for the solutions

to these. The number of variables defines the dimensionality of our problem setting. For instance, see

that the equation ax + by + cz = d specify variables in the three-dimensional space (x, y, z) ∈ R3. For

instance, the linear equation z = 0 specifies an xy-plane inside the xyz-space.
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Definition 4 (Solution and Solution Sets to a Linear Equation). A solution to a linear equation (see

Definition 2 is a set of numbers {x1 = s1, x2 = s2, · · · , xn = sn} that satisfies the linear equation s.t.

n∑
i=1

aisi = b. (4)

The set of all such solutions is called a solution set to the equation. When the solution set is expressed

by equations representing exactly the equations in the solution set, these set of expressions are known as

the general solution.

For instance, in the xy-space, solutions to the equation x+ y = 1 are points taking the form (x, y) =

(1−s, s) where s ∈ R. In the xyz-space, the solutions to the same equation are points (x, y, z) = (1−s, s, t)
where s, t ∈ R. The solution set form points on a plane. The solution set to the zero equation (see

Definition 3) is the entire space Rn corresponding to the number of dimensions in the linear equation.

The solution set to
∑n
i 0xi ̸= 0 is ∅.

Definition 5 (Linear System). A finite set of m equations in n variables x1, · · ·xn is called a linear

system and may be represented

ai1x1 + ai2x2 + · · ·+ ainxn = bi, i ∈ [m] (5)

where aij , i ∈ [m], j ∈ [n] ∈ R.

Definition 6 (Zero System). A zero system is a linear system (see Definition 5) where all the constants

aji, bj , i ∈ [n], j ∈ [m] are zero.

Definition 7 (Solution and Solution Sets to a Linear System). A solution to a linear system (see

Definition 5) is a set of numbers {x1 = s1, x2 = s2, · · ·xn = sn} that satisfies all linear equations (i.e)

n∑
i=1

ajisi = bj , j ∈ [m] (6)

The set of all such solutions is called a solution set to the system. When the solution set is expressed by

equations representing exactly the equations in the solution set, these set of expressions are known as the

general solution.

Definition 8 (Consistency of Systems). A system of linear equations that has solution set ̸= ∅ is said

to be consistent. Otherwise it is inconsistent.

Every system of linear equations will either be consistent or inconsistent. Consistent systems have

either a unique solution or infinitely many solutions.

Exercise 2. Show that a linear system Ax = b has either no solution, only one solution or infinitely

many.

Proof. If the linear system is not consistent then it must have no solution. Otherwise, it may have a

unique solution, or more than one solution. Suppose there are two solutions u ̸= v and Au = Av = b.

Then we may write

A(tu+ (1− t)v) = tAu+ (1− t)Av = tb+ (1− t)b = tb+ b− tb = b. (7)

This is valid for all t ∈ R, and so we have infinitely many solutions.
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For example, a system of two linear equations in two-dimensional space each representing a line has

infinite solutions if they are the same line, no solution if they are parallel but different lines, and exactly

one solution otherwise.

Exercise 3. In the xyz-space, the two equations

a1x+ b1y + c1z = d1, (E1) (8)

a2x+ b2y + c2z = d2, (E2) (9)

where ∃a1, b1, c1 ̸= 0∧∃a2, b2, c2 ̸= 0 represents two planes. The solution to the system is the intersection

between the two planes. Logicize that there is either no solution (E1//E2) or infinite number of solutions

((E1 = E2) ∨ (E1 intersects E1 on a line)).

3.1.1.1 Elementary Row Operations (EROs)

Definition 9 (Augmented Matrix Representation of Linear Systems). See that the system of linear

equations (Definition 5) given

∀j ∈ m,
n∑
i=1

ajixi = bj (10)

may be represented by the rectangular array of numbers
a11 a12 · · · a1n b1

a21 a22 · · · a2n b2

· · · · · · · · · · · ·
am1 am2 · · · amn bm

 (11)

and we call this the augmented matrix of the system. We denote this (A|b). Sometimes, we omit this

representation and just assign a single letter, say M , to represent the entire matrix.

Definition 10 (Elementary Row Operations). When we solve for a linear system, we implicitly or

explicitly perform the following operations; i) multiply equation by some non-zero k ∈ R, (ii) interchange
two equations, (iii) add a multiple of one equation to another. In the augmented matrix (see Definition

9), these operations correspond to multiplying a row by a non-zero constant, swapping two rows and

adding a multiple of one row to another row respectively. These three operations are collectively known

as the elementary row operations. We adopt the following notations

1. kRi ≡ multiply row i by k.

2. Ri ↔ Rj ≡ swap rows i, j.

3. Rj + kRi ≡ add k times of row i to row j.

Definition 11 (Row Equivalent Matrices). Two matrices A,B are said to be row equivalent if one may

be obtained by another from a series of EROs. We denote this by

A
R≡ B. (12)

Theorem 4 (Solution Sets of Row Equivalent Augmented Matrix Represented Linear Systems). Two

linear systems (Definition 5) with augmented matrix representations (A|b), (C|d) have the same solution

set if (A|b) R≡ (C|d).

Proof. See proof in Exercise 14 using block matrix notations.
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3.1.1.2 Row-Echelon Forms

Definition 12 (Leading Entry). The first non-zero number in a row of the matrix is said to be the

leading entry of the row.

Definition 13 (Zero Row). Let the row representing a zero equation (see Definition 3) be called the zero

row.

Definition 14 (Zero Column). Let the column representing all zero coefficients in the representative

linear system for some variable (see Definition 6) be called the zero column. That is, the column has all

zeros.

Definition 15 (Row-Echelon Form (REF)). A matrix is said to be row-echelon if the following properties

hold:

1. Zero rows (Definition 13) are grouped at the bottom of the matrix.

2. If any two successive rows are non-zero rows, then the higher row has a leading entry (Definition

12) occurring at a column that is to the left of the lower row.

For matrix A, we denote its matrix REF as REF (A).

Definition 16 (Pivot Points/Columns). The leading entries (Definition 12) of row-echelon matrices

(Definition 15) are called pivot points. The column of a row-echelon form containing a pivot point is

called a pivot column, and is otherwise a non-pivot column.

Definition 17 (Reduced Row-Echelon Form (RREF)). A reduced row-echelon-form matrix is a row-

echelon-form matrix that has

1. All leading entries of non-zero row equal to one. (Definitions 12 and 13)

2. In each pivot column, all entries other than the pivot point is equal to zero. (Definition 16)

For matrix A, we denote its matrix RREF as RREF (A).

Note that a zero system is an REF (and also an RREF) by the Definitions 15 and 17. We show that

obtaining the REF and RREF gives us an easy way to obtain the solution set to a linear system.

Exercise 4 (Finding solutions to REF, RREF Representations of Linear Systems; Back-Substitution

Method). Find the solution set to the linear systems represented by the following augmented matrices.

(see Definitions 9, 5 and 4)

1.  1 0 0 1

0 1 0 2

0 0 1 3

 (13)

2.  0 2 2 1 −2 2

0 0 1 1 1 3

0 0 0 0 2 4

 (14)
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3.  1 −1 0 3 −2
0 0 1 2 5

0 0 0 0 0

 (15)

4. [
0 0 0 0

0 0 0 0

]
(16)

5.  3 1 4

0 2 1

0 0 1

 (17)

Proof. 1. It is easy to see that x1 = 1, x2 = 2, x3 = 3 is the unique solution this linear system.

2. Since this represents the linear system

2x2 + 2x3 + x4 − 2x5 = 2, (18)

x3 + x4 + x5 = 3, (19)

2x5 = 4, (20)

solve. We let the solutions to variables of non-pivot columns be arbitrary. That is, x1 ∈ R. The

third equation says x5 = 2. Substituting into the second equation, get

x3 + x4 + 2 = 3, (21)

so x3 = 1− x4. Substituting into first equation,

2x2 + 2(1− x4) + x4 − 2 · 2 = 2, (22)

so x2 = 2 + 1
2x4. So there are two free parameters, and we arrive at the general solution

(x1, x2, x3, x4, x5) = (s, 2 + 1
2 t, 1 − t, t, 2), where s, t ∈ R. This technique is known as the back-

substitution method.

3. By the same back-substitution method, arrive at the general solution (x1, x2, x3, x4) = (−2 + s −
3t, s, 5− 2t, t) where s, t ∈ R.

4. The solution set is (r, s, t) = R3.

5. This system is inconsistent! (Definition 8)

3.1.1.3 Gaussian Elimination Methods

Let A
R≡ R. If R is (R)REF, R is said to (reduced) row-echelon form of A and A is said to have (R)REF

form R.

Theorem 5 (Gaussian Elimination/Row Reduction and Gauss-Jordan Elimination). We outline the

algorithm to reduce a matrix A to its REF B.
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1. Locate the leftmost non-zero column (see Definition 14).

2. If this happens to be the top-most column, then continue. Else, swap the top row with the row

corresponding to the leading entry (Definition 12) found in the previous step.

3. For each row below the top row, add a suitable multiple so that all leading entries below the leading

entry of the top row equals zero.

4. From the second row onwards, repeat algorithm from step 1 applied to the submatrix until REF is

obtained.

To further get a RREF from REF obtained,

5. Multiply a suitable constant to each row so that all the leading entries become one.

6. From the bottom row onwards, add suitable multiples of each row such that all rows above the

leading entries at pivot columns (Definition 16) are all zero.

Steps 1 − 4 are known as Gaussian Elimination. Obtaining the RREF via Steps 1 − 6 is known as

Gauss-Jordan elimination.

Exercise 5. Obtain the RREF of the following augmented matrix 0 0 2 4 2 8

1 2 4 5 3 −9
−2 −4 −5 −4 3 6

 (23)

via Gauss-Jordan Elimination (see Theorem 5).

Proof. Recall the notations for EROs (see Definition 10). We perform the following steps; 1 2 4 5 3 −9
0 0 2 4 2 8

−2 −4 −5 −4 3 6

 R1 ↔ R2, (24)

 1 2 4 5 3 −9
0 0 2 4 2 8

0 0 3 6 9 −12

 R3 + 2 ·R1, (25)

 1 2 4 5 3 −9
0 0 2 4 2 8

0 0 0 0 6 −24

 R3 −
3

2
·R2, (26)

 1 2 4 5 3 −9
0 0 1 2 1 4

0 0 0 0 1 −4

 1

2
R2,

1

6
R3, (27)

 1 2 4 5 0 3

0 0 1 2 0 8

0 0 0 0 1 −4

 R2 − 1 ·R3, R1 − 3 ·R3, (28)

 1 2 4 −3 0 −29
0 0 1 2 0 8

0 0 0 0 1 −4

 R1 − 4 ·R2. (29)
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Result 2 (REF and their Interpretations for Solution Sets). Consider the REF (A|b) augmented matrix

form (see Definition 9). Note that every matrix has a unique RREF but can have many different REFs.

If a linear system is not consistent (Definition 8), then the last column of the REF form of the augmented

matrix is a pivot column. In other words, there will be a row representing an equation where
∑n
i 0xi = c,

but c ̸= 0. There is no solution to this linear system. A consistent linear system has a unique solution

if except the last column b, every column is a pivot column. This system has as many variables in the

linear system as the number of nonzero rows in the REF. If there exists a non-pivot column in the REF

that is not the last one (b), then this consistent linear system has infinitely many solutions. This linear

system has number of variables greater than the number of non-zero rows in the REF.

Note that when solving for linear systems in which the contents are unknown constants, then we need

to be careful about performing illegal row operations. That is, assume an augmented matrix a 1 0 a

1 1 1 1

0 1 a b

 (30)

and in order to make the second row leading entry 0, we would perhaps like to perform R2 − 1
aR1.

However, we do not know that a ̸= 0. In this case, we can consider either first swapping the first and

second row and progressing, or perform a by-case method.

3.1.1.4 Homogeneous Linear Systems

Definition 18 (Homogeneous Linear Systems). A linear system (Definition 18) is homogeneous (HLS)

if it has augmented matrix representation (A|b) where b = 0 and all constants aij ,∈ R,∀i ∈ [m],∀j ∈ [n].

See that the HLS is always satisfied by xi = 0, i ∈ [n] and we call this the trivial (sometimes, zero)

solution. A non-trivial solution is any other solution that is not trivial.

Exercise 6. See that in the xy-plane, the equations

a1x+ b1y = 0, (31)

a2x+ b2y = 0 (32)

where a1, b1 not both zero and a2, b2 not both zero each represent straight lines through the origin, The

system has only the trivial solution when the two equations are not the same line, otherwise they have

infinitely many solutions. In the xyz-space, a system of two such linear equations passing through the

origin always has infinitely many (non-trivial) solutions in addition to the trivial one, since they are

either the same plane or intersect at a line passing through the origin at (0, 0, 0).

Lemma 2. A HLS (Definition 18) has either only the trivial solution or infinitely many solutions in

addition to the trivial solution. A HLS with more unknowns than equations has infinitely many solutions.

Proof. The first assertion is trivial since the zero solution satisfies it. The second assertion follows

from considering the REF of the augmented matrix representation of a HLS with more unknowns than

equations, then apply Result 2.

Exercise 7. For a HLS Ax = 0 (Definition 18) with non-zero solution, show that the system Ax = b

has either no solution or infinitely many solutions.
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Proof. By Theorem 2, a HLS system has no solution, one solution or infinite solutions. But suppose

there is some solution u s.t. Au = b. Let v be non-zero solution for the HLS s.t. Av = 0, v ̸= 0. Then

A(u+ v) = Au+Av = b+0 = b, so u+ v is solution and u+ v ̸= u. But by Lemma 2, the solution space

for Ax = 0 must have infinitely many vectors if such a v exists. It follows Ax = b has infinitely many

solutions if ∃u s.t Au = b.

3.1.2 Matrices

We formally defined augmented matrices in Definition 9. In the earlier theorems, we also referred to

generalized matrix representations of numbers. We provide formal definition here.

Definition 19 (Matrix). A matrix is a rectangular array (or array of arrays) of numbers. The numbers

are called entries. The size of a matrix is given by the rectangle’s sides, and we say a matrix A is m×n
for m rows and n column matrix. We can denote the entry at the i-th row and j-th coordinate by writing

A(i,j) = aij. This is often represented

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
am1 am2 · · · amn

 , (33)

and for brevity we also denote this A = (aij)m×n, and sometimes we drop the size all together and write

A = (aij).

Definition 20. For brevity, given a matrix A (Definition 19) we refer to its size by using the notation

nrows(A) and ncols(A) to indicate the number of rows in A and number of columns in A respectively.

That is, A is a matrix size nrows(A)× ncols(A).

Definition 21 (Column, Row Matrices/Vectors). A column matrix (vector) is a matrix with only a

single column. A row matrix (vector) is a matrix with only one row.

Definition 22 (Square Matrix). A square matrix is a matrix (Definition 19) that is square (number of

rows is equivalent to the number of rows). We say An×n square matrix is of order n.

Definition 23 (Diagonal Matrix). A square matrix A of order n (Definition 22) is diagonal matrix if

all entries that are not along the diagonal are zero. That is,

aij = 0 when i ̸= j. (34)

Definition 24 (Scalar Matrix). A diagonal matrix (Definition 23) is scalar matrix if all diagonal entries

are the same, that is

aij =

{
0 i ̸= j

c i = j,
(35)

for some constant c ∈ R.

Definition 25 (Identity Matrix). Scalar matrix (Definition 24) is identity matrix if the diagonals are

all one, that is c = 1. We often denote this as 1. If the size needs to be specified, we add subscript 1n

to indicate order n.
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Definition 26 (Zero Matrix). Arbitrary matrix m× n is zero matrix if all entries are zero.

Definition 27 (Symmetric Matrix). A square matrix A (Definition 22) is symmetric if aij = aji for all

i, j ∈ [n].

Definition 28 (Triangular Matrix). A square matrix A (Definition 22) is upper triangular if aij = 0

whenever i > j, and is lower triangular if aij = 0 whenever i < j.

3.1.2.1 Operations on Matrices

Definition 29 (Matrix Addition, Subtraction and Scalars). The following are defined for operations on

matrices:

1. Scalar Multiplication: cA = (caij).

2. Matrix addition: A+B = (aij + bij).

3. Matrix subtraction: A−B = (aij − bij). 1 We denote −A = −1 ·A.

Definition 30 (Matrix Equality). To show that two matrices A,B are equal, we have to show their their

size is the same, and their entries aij = bij ∀i,∀j.

Theorem 6 (Properties of Matrix Operators). Define matrices A,B,C of the same size and let c, d ∈ R.
Then the following properties hold:

1. Commutativity: A+B = B +A.

2. Associativity: A+ (B + C) = (A+B) + C.

3. Linearity: c(A+B) = cA+ cB.

4. Linearity: (c+ d)A = cA+ dA.

5. c(dA) = (cd)A = d(cA).

6. A+ 0 = 0 +A = A.

7. A−A = 0.

8. 0A = 0.

Proof. To show equality of matrices, we have to show their size is the same and that their corresponding

entries match (see Definition 30). The proofs for the above theorems are rather trivial, and we show

the associativity law (other proofs are of the same stripe). Proof of associativity: Let A = (aij), B =

(aij), C = (aij), then

A+ (B + C) = (aij) + (B + C) (36)

= (aij) + (bij + cij) (37)

= (aij + bij) + (cij) (38)

= (A+B) + (cij) (39)

= (A+B) + C. (40)

That is, we rely on the associativity on addition of real numbers to prove the associativity on addition

of matrices. Finally, see that their sizes match.
1note that the matrix subtraction can be defined as the addition of a matrix A with a matrix B that has first been

operated on a by scalar multiplication of c = −1.
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Definition 31 (Matrix Multiplication). For matrices A = (aij)m×p, B = (bij)p×n, the matrix product

AB is defined to be the m× n matrix s.t.

C = A×B = (cij)m×n =

p∑
k=1

aikbkj . (41)

The matrix multiplication AB is only possible when ncols(A) = nrows(B).

Exercise 8. Show that matrix multiplication (Definition 31) is not commutative.

Proof. Prove by counterexample. For matrices

A =

(
−1 0

2 3

)
, B =

(
1 2

3 0

)
, (42)

see that

AB =

(
−1 −2
11 4

)
̸=

(
3 6

−3 0

)
= BA. (43)

Since the matrix multiplication is not commutative, when describing in words, we say that AB is the

pre-multiplication of A to B and BA as the post-multiplication of A to B to prevent ambiguity.

Theorem 7 (Properties of Matrix Multiplication). Matrix multiplication (Definition 31) satisfies the

following properties (we assume trivially that the size of the matrices are appropriate such that the matrix

multiplication is legitimate) :

1. Associativity: A(BC) = (AB)C.

2. Distributivity: A(B1 +B2) = AB1 +AB2.

3. c(AB) = (cA)B = A(cB).

4. A0 = 0, and 0A = 0.

5. For identity matrix (Definition 25) of appropriate size ,A1 = 1A = A.

Proof. Proof of the asserted statements follow directly form their definitions of matrices and matrix

multiplications (Definitions 19, 31) and computing the resulting entries componentwise via the laws of

algebra on real numbers (additionally, we also have to show that the sizes on the LHS and RHS are

matching).

Definition 32 (Powers of Square Matrices). For square matrix A and natural number n ≥ 0, the power

of A can be written

An =


1 if n = 0,

AA · · ·A︸ ︷︷ ︸
n number of times

if n ≥ 1. (44)

By associativity, AmAn = Am+n. By non-commutativity (AB)n ̸= AnBn. See Theorem 7 for

statements on properties of matrix multiplications.

Exercise 9. Show that if AB = BA, then (AB)k = AkBk.
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Proof. We proof by induction. Base case is when k = 1, so (AB)1 = AB = A1B1. This statement is

trivial. Now assume (AB)j = AjBj for j < k. Then (AB)j+1 = (AB)jAB = AjBjAB. Define the swap

operator ψ : BA → AB, then apply ψj(BjA) to get ABj . Then we have Ajψj(BjA)B = AjABjB =

Aj+1bj+1 and by induction we are done.

We may express rows, columns and even submatrices of a matrix by grouping together different

entities. Here we show some examples.

Exercise 10 (Expressing Matrices as Block Matrices of Rows and Columns). For matrix A =

(
1 2 3

4 5 6

)
,

B =

 1 1

2 3

−1 2

, we may write

A =

(
a1

a2

)
, B =

(
b1 b2

)
, (45)

a1 =
(
1 2 3

)
, a2 =

(
4 5 6

)
, (46)

b1 =

 1

2

−1

 , b1 =

1

3

2

 . (47)

See that the following relationships hold by direct computation

AB =
(
Ab1 Ab2

)
=

(
a1B

a2B

)
. (48)

Exercise 11 (Block Matrix Operations). Let A be m× n matrix, and B1, B2 be n× p, n× q matrices,

C1, C2 be r ×m matrices, and D1, D2 be s ×m, t ×m matrices respectively. See which of the following

block operations are valid:

1. A
(
B1 B2

)
=
(
AB1 AB2

)
.

2.
(
C1 C2

)
A =

(
C1A C2A

)
.

3.

(
D1

D2

)
A =

(
D1A

D2A

)
.

Proof. Refer to Exercise 10 for operations on matrix blocks written as rows and columns.

1. If we write B1 =
(
b1 · · · bp

)
, B2 =

(
c1 · · · cq

)
. Then

A
(
B1 B2

)
=
(
Ab1 · · · Abp Ac1 · · · Acq

)
(49)

and the relation is valid.

2. The matrix sizes do not permit a valid matrix operation.
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3. If we let D1 =

d1· · ·
ds

 , D2 =

f1· · ·
ft

 , then

(
D1

D2

)
=



d1

· · ·
ds

f1

· · ·
ft


. (50)

Then we have

(
D1

D2

)
A =



d1A

· · ·
dsA

f1A

· · ·
ftA


(51)

and the relation is valid.

Recall the augmented matrix representation of linear systems (see Definition 9). We may define an

equivalent form.

Definition 33 (Matrix Representation of Linear System). For system of linear equations

∀j ∈ [m], aj1x1 + aj2x2 + · · · ajnxn = bj , (52)

we may represent the linear system by matrix multiplication
a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
am1 am2 · · · amn


︸ ︷︷ ︸

A


x1

x2

· · ·
xn


︸ ︷︷ ︸

x

=


b1

b2

· · ·
bm


︸ ︷︷ ︸

b

. (53)

Then we say that A is the coefficient matrix, x is the variable matrix and that b is the constant matrix

for the linear system specified. A solution to the linear system is a n× 1 column matrix

u =


u1

u2

· · ·
un

 (54)

where Au = b. If we treat A =
(
c1 c2 · · · cn

)
where ci represents the i-th column of A, then we

may write

c1x1 + c2x2 + · · · cnxn =

n∑
j=1

cjxj = b. (55)

That is, the constant matrix is a linear combination of the columns of the coefficient matrix, where the

weights are determined via the variable matrix.
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Definition 34 (Matrix Transpose). For matrix A = (aij)m×n, the matrix transpose of A is written

A′ = (a′ij)n×m where the entry a′ij = aji.

See that the rows of A are the columns of A′ and vice versa. See that a square matrix A is symmetric

(Definition 27) iff A = A′.

Theorem 8 (Properties of the Matrix Transpose). The matrix transpose follows the following properties

1. (A′)′ = A.

2. (A+B)′ = A′ +B′.

3. For c ∈ R, (cA)′ = cA′.

4. (AB)′ = B′A′.

Proof. The proof of the first three parts are fairly straightforward by direct computation of the algebraic

properties of real numbers that follow from their Definitions. We show the last assertion. Denote the sizes

of matrix A to be m×n and that of B to be n× p so that the matrix multiplications (Definition 31) are

defined. Then AB has size m×p, so that its transpose has size p×m. B′ has size p×n, A′ has size n×m,

so B′A′ has size p ×m. We show they are componentwise equivalent. Since (AB)ij =
∑n
l ailblj . Then

(AB)′ij =
∑n
l ajlbli. On the other hand, we have A′

ij = aji, B
′
ij = bji, so that (B′A′)ij =

∑n
l b

′
ila

′
lj =∑n

l bliajl. We have showed that the corresponding entries are the same.

3.1.2.2 Invertibility of Matrices

Definition 35 (Invertibility of Square Matrix). Let A be square matrix of order n (Definition 22), then

we say that A is invertible if ∃ square matrix B of order n s.t. AB = 1n = BA. The matrix B is said

to be the inverse of A. We denote this A−1. There is no ambiguity; we shall see that the inverse of a

matrix is unique (Theorem 9).

Definition 36 (Singularity of Square Matrix). A matrix that does not have an inverse (Definition 35)

is said to be singular.

Exercise 12. Show that the matrix A =

(
1 0

1 0

)
is singular.

Proof. Suppose not. Then let the inverse be B =

(
a b

c d

)
. Then by Definition 35, we have

BA = 1 =

(
1 0

0 1

)
=

(
a b

c d

)(
1 0

1 0

)
=

(
a+ b 0

c+ d 0

)
. (56)

Then 1 = 0. Contradiction.

Theorem 9 (Uniqueness of Inverses). If B,C are inverses of square matrix A, then B = C.

Proof. Write

AB = 1 =⇒ CAB = C1 =⇒ 1B = C =⇒ B = C. (57)
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Exercise 13 (Conditions for Invertibility of Square Matrix Order Two). In the case for square matrix

A of order two, denote (
a b

c d

)
. (58)

State the conditions for invertibility and find the matrix inverse.

Proof. Define B =

(
d

ad−bc
−b

ad−bc
−c

ad−bc
a

ad−bc

)
, which is defined only if ad− bc ̸= 0. We may compute directly the

matrices AB = BA = 1 (we show how to explicitly compute matrix inverses such as B later on).

Theorem 10 (Properties of Matrix Inverse). Let A,B be two invertible matrices (Definition 35), and

c ̸= 0,∈ R. Then the following properties hold

1. cA is invertible, in particular (cA)−1 − 1
cA

−1.

2. A′ is invertible, and (A′)−1 = (A−1)′.

3. A−1 is invertible and (A−1)−1 = A.

4. AB is invertible and (AB)−1 = B−1A−1.

Proof. -

1. We can write

(cA)(
1

c
A−1) =

(
c
1

c

)
AA−1 = 1, (59)

(
1

c
A−1)(cA) = (

1

c
c)A−1A = 1, (60)

and the result immediately follows.

2. We show this by verifying that (A−1)′ is the inverse of A′, which confirms the assertion that A′ is

invertible. In particular, by properties of matrix transpose (Theorem 8), write

A′(A−1)′ = (A−1A)′ = 1
′ = 1, (61)

(A−1)′A′ = (AA−1)′ = 1
′ = 1. (62)

Then A′ is invertible, and the inverse is (A−1)′.

3. See that A−1A = 1, AA−1 = 1 and by definition of inverse (Definition 35), the result follows.

4. Since A,B invertible, write

(AB)(B−1A−1) = ABB−1A−1 = A1A−1 = AA−1 = 1. (63)

Also

(B−1A−1)(AB) = 1 (64)

by similar reasoning.
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Definition 37 (Negative Powers of a Square Matrix). ?? For an invertible matrix A, we may define

negative powers for a square matrix given n ∈ Z+ as the matrix power (Definition 32) of the inverse.

That is,

A−n = (A−1)n. (65)

See that if An is invertible, then (An)−1 = A−n for any n ∈ Z.

3.1.2.3 Elementary Matrices

One may notice that the elementary row operations (see Definition 10) may be considered as the pre-

multiplication of some matrix to the matrix being operated on. For instance, see that

A =

1 0 2 3

2 −1 3 6

1 4 4 0

 2R2→ B =

1 0 2 3

4 −2 6 12

1 4 4 0

 , (66)

and see that 1 0 0

0 2 0

0 0 1


︸ ︷︷ ︸

E1

A = B. (67)

In particular, the ERO kRi (Definition 10) may be performed by the pre-multiplication of matrix Ek,

where Ek is a diagonal matrix (Definition 23) of order nrows(A), where all the entries along the diagonal

are one except for the i-th row, where the entry is k. If k ̸= 0, and since performing kRi,
1
kRi in sequence

gives us back the same matrix - see that the Ek is invertible and that E−1
k is the diagonal matrix with

all ones along the diagonal except for 1
k entry on the i-th row.

Next, observe the ERO Ri ↔ Rj (see Definition 10) on the following instance:

A =

1 0 2 3

2 −1 3 6

1 4 4 0

 R2↔R3→ B =

1 0 2 3

1 4 4 0

2 −1 3 6

 , (68)

and see that 1 0 0

0 0 1

0 1 0


︸ ︷︷ ︸

E2

A = B. (69)

In particular, the ERO Ri ↔ Rj (Definition 10) may be performed by the pre-multiplication of matrix

Es, where Es is a matrix that began with an identity matrix (Definition 25) of order nrows(A) and has

gone through precisely the row swap Ri ↔ Rj . See that swapping rows i and j and then swapping again

rows i and j gives us back the original matrix. Then Es = E−1
s .

Last but not least, observe the ERO Ri + kRj (see Definition 10) on the following instance:

A =

1 0 2 3

2 −1 3 6

1 4 4 0

 R3+2R1→ B =

1 0 2 3

1 4 4 0

3 4 8 6

 , (70)
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and see that 1 0 0

0 1 0

2 0 1


︸ ︷︷ ︸

E3

A = B. (71)

In particular, the ERO Ri + kRj (Definition 10) may be performed by the pre-multiplication of matrix

El, where El is a matrix that began with an identity matrix (Definition 25) of order nrows(A) and has

gone through precisely the row addition Ri + kRj . As before, the (triangular, Definition 28) matrix El

is invertible and E−1
l represents the row-swap operation Ri − kRj .

Definition 38 (Elementary Matrix). A square matrix (Definition 22) that can be obtained from an iden-

tity matrix (Definition 25) from a single elementary row operation (Definition 38) is called an elementary

matrix.

We saw that all elementary matrices (Definition 38) are invertible, and their inverses are also elemen-

tary matrices. The discussions thus far allow us to arrive at the following result:

Lemma 3. The EROs (Definition 10) performed on arbitrary matrices correspond precisely to the pre-

multiplication of an elementary matrix (Definition 38) obtained from performing the ERO on the identity

matrix (Definition 25).

For a series of EROs applied in sequence O1, O2, · · ·Ok, (Definition 10) applied on A, s.t.

A
O1→O2→ · · · Ok→ B, (72)

and their corresponding elementary matrices E1, · · · , Ek, see that the relation

EkEk−1 · · ·E1A = B (73)

must hold. By the invertibility, we have the relation

A = E−1
1 E−1

2 · · ·E
−1
k B. (74)

Exercise 14. Prove the solution-set equivalency asserted in Theorem 4.

Proof. We show that if there are two row equivalent (Definition 11) augmented matrices (Definition 9)

(A|b), (C|d), then the linear systems Ax = b, Cx = d share solution set. By Lemma 3, see that ∃E s.t.

(C|d) = E(A|b) = (EA|Eb), (75)

which is valid by Exercise 11. Then if Au = b (that is if u is solution), then

Au = b =⇒ EAu = Eb =⇒ Cu = d. (76)

On the other hand, if Cv = d, then

Cv = d =⇒ EAv = Eb =⇒ E−1EAv = E−1Eb =⇒ IAv = Ib =⇒ Av = b. (77)

They share solution set.

Theorem 11 (Invertibility of Square Matrices, 1). If A is square matrix order n, then the following

statements are equivalent:
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1. A is invertible.

2. Ax = 0 has only the trivial solution.

3. RREF of A is identity 1 matrix.

4. A can be expressed as Πni Ei, where Ei are elementary matrices.

Proof. It turns out that this theorem shows an easy way to compute the inverses of an invertible matrix

A. To show

(i) 1 =⇒ 2: if Ax = 0, then

x = Ix = A−1Ax = A−10 = 0, (78)

where the last step follows from Theorem 7.

(ii) 2 =⇒ 3: Ax = 0 is the only trivial solution. Since A is square, nrows(A) = ncols(A), then by

Lemma 2, the RREF of A of (A|0) has no zero rows. By definition of RREF (Definition 17), the

RREF of A is identity (Definition 25).

(iii) 3 =⇒ 4: Since RREF of A is 1, by Lemma 3, ∃Ei, i ∈ [k] s.t.

EkEk−1 · · ·E1A = 1. (79)

Then A = (Ek · · ·E1)
−1

1, and by inverse properties, Theorem 10, we have

A = E−1
1 · · ·E

−1
k . (80)

(iv) 4 =⇒ 1: Since A is product of invertible elementary matrices, A is invertible by Theorem 10.

Theorem 12 (Cancellation Law). Let A be an invertible matrix (Definition 35) of order m, then the

following properties hold:

1. AB1 = AB2 =⇒ B1 = B2.

2. C1A = C2A =⇒ C1 = C2.

This does not hold for matrix A when it is non-singular.

Proof. For first the part,

AB1 = AB2 =⇒ AB1 −AB2 = 0 =⇒ A(B1 −B2) = 0. (81)

Then since A is invertible, the HLS has only trivial solution by Theorem 11, so B1 − B2 = 0 and it

follows that B1 = B2. For part 2, write

(C1 − C2)A = 0 =⇒ (C1 − C2)AA
−1 = 0 =⇒ (C1 − C2)1 = 0, (82)

and the result follows.
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Wemay use the discussions in Theorem 11 to compute the matrix inverse. ForA satisfying Ek · · ·E1A =

1, see that Ek · · ·E1 = A−1 by the post multiplication of A−1 to both the RHS and LHS. Recall this is

valid, since we are guaranteed the invertibility of A. Furthermore, this is unique (Theorem 9). Consider

the n× 2n matrix (A|1n). Then

Ek · · ·E1(A|1) = (Ek · · ·E1A|Ek · · ·E11) (83)

= (1|A−1). (84)

That is, to the augmented matrix (A|1), if we perform Gauss-Jordan elimination (see Theorem 5) and

get RREF 1 on the LHS of |, the RHS is A−1. Otherwise, A is singular and does not have an inverse.

The following theorem shows us that given square matrices A,B - when we are to verify A−1 = B, we

are only required to check one of AB = 1 or BA = 1.

Theorem 13. Let A,B be square matrix order n. If AB = 1, then A,B are both invertible and

A−1 = B, B−1 = A, BA = 1. (85)

Proof. Consider HLS (Definition 18) Bx = 0. If Bu = 0, then

ABu = Iu =⇒ A0 = u =⇒ 0 = u. (86)

Then Bx = 0 only has the trivial solution. By Theorem 11, B is invertible. Since B is invertible:

AB = 1 =⇒ ABB−1 = 1B−1 =⇒ A1 = B−1 =⇒ A = B−1. (87)

So A is invertible by Theorem 11 and A−1 = (B−1)−1 = B, BA = BB−1 = 1.

Exercise 15. For square matrix A, given A2 − 3A− 61 = 0, show that A is invertible.

Proof. Since we may write

A(A− 31) = A2 − 3A1 = A2 − 3A = 61, (88)

then A
[
1
6 (A− 31)

]
= 1, and it follows that A is invertible from Theorem 13.

Theorem 14 (Singularity of Matrix Products). Let A,B be two square matrices of order n. Then if A

is singular, AB,BA are both singular (see Definition 14).

Proof. Suppose not. Then AB is invertible, and let C = (AB)−1. Then we may write

ABC = 1, (89)

then A is invertible since A−1 = BC by Theorem 13. This is contradiction.

Theorem 15 (Elementary Column Operations). See from Lemma 3 that the pre-multiplication of an

elementary matrix to matrix A is equivalent to doing an ERO on Ap×m matrix. Let Ek, Es, El be

elementary matrices corresponding to kRi, Ri ↔ Rj , Ri+kRj respectively (see Definition 10). Then, the

post multiplication of the matrices Ek, Es, El correspond to

1. Multiplying the i-th column of A by k.

2. Swap columns i, j in A.

3. Add k times j-th column of A to i-th column of A

respectively and let these be known collectively as elementary column operations (ECOs). They shall be

denoted kCi, Ci ↔ Cj , Ci + kCj.
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3.1.2.4 Matrix Determinants

It turns out that whether a square matrix is invertible (Definition 35) depends on a quantity of the

matrix known as the determinant. We define this recursively.

Definition 39 (Determinants and Cofactors). For square matrix A order n, letMij be an (n−1)×(n−1)
square matrix obtained from A by deleting the i-th and j-th column. Then the determinant of A is defined

as

det(A) =

{
a11 if n = 1,

a11A11 + a12A12 + · · ·+ a1nA1n if n > 1,
(90)

where Aij = (−1)i+jdet(Mij). The number Aij is known as the ij-cofactor of A. This method of recur-

sively computing matrix determinants are known as cofactor expansion. Often, we adopt the equivalent

notations for determinant of A:

det(A) =

∣∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣∣
. (91)

Exercise 16 (Cofactor Expansion Examples). Here we show some instances of co-factor expansion.

When the matrix is 2× 2, then we have a general form

A =

(
a b

c d

)
. (92)

Then see that the determinant by cofactor expansion

a · (−1)1+1det(d) + b · (−1)1+2det(c) = ad− bc. (93)

Then for larger matrices, we may use these sub-results. For instance, the determinant for B =

−3 −2 4

4 3 1

0 2 4


via cofactor expansion is obtained

det(B) = (−3)

∣∣∣∣∣3 1

2 4

∣∣∣∣∣− (−2)

∣∣∣∣∣4 1

0 4

∣∣∣∣∣+ 4

∣∣∣∣∣4 3

0 2

∣∣∣∣∣ = −3(3 · 4− 1 · 2) + 2(4 · 4− 1 · 0) + 4(4 · 2− 3 · 0) = 34. (94)

Result 3 (Cofactor Expansion Invariance). For square matrix A order n, det(A) (Definition 39) may

be found via cofactor expansion along any row or any column.

Theorem 16 (Cofactor Expansion of Triangular Matrices). For triangular matrix A, the determinant

A is equal to the product of diagonal entries of A.

Proof. By definition of triangular matrices (Definition 28), both the upper triangular and lower triangular

has a row that is all zeros except for possibly a singly entry (the diagonal itself). That is, an upper

triangular takes general form

A =


a11 a12 · · · a1n

0 a22 · · · a2n

· · · · · · · · · · · ·
0 0 · · · ann

 (95)
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Additionally, since matrix is square, cofactor expansion along the last row, last entry has the term

(−1)i+i = 1. By Result 3, see that if we apply recursively the cofactor expansion along the last row,

we obtain just the product of the diagonal entries. A similar reasoning is applied if the matrix is lower

triangular.

See that the determinant of 1 is one by Theorem 16.

Theorem 17 (Determinant of Matrix Transpose). For square matrix A of order n, det(A) = det(A′).

Proof. We prove by induction. The base case is for a matrix containing a single scalar value. This is

trivially true, since the transpose of a matrix 1 × 1 is itself. Next, assume det(A) = det(A′) for any

square matrix A order k. We show this holds for (k + 1) × (k + 1) matrix. In particular, by cofactor

expansion along the first row of A, obtain

det(A) =

n∑
i

(−1)1+ia1idet(M1i). (96)

Next perform, cofactor expansion along the first column of A′, then

det(A′) =

n∑
i

(−1)1+ia1idet(M ′
1i). (97)

By induction, det(A) = det(A′) since det(Mij) = det(M ′
ij).

Theorem 18 (Determinant of Repeated Row/Column Matrix). The determinant of a square matrix

with two identical rows is zero. The determinant of a square matrix with two identical columns is zero.

Proof. We prove by induction. The base case is for matrix A size 2 × 2. For matrix A =

(
a b

a b

)
, by

Exercise 16 we have det(A) = ab− ab = 0. Assume that for k < n, det(A) size k × k with repeated row

is zero. Then consider a (k+1)× (k+1) matrix with row i equivalent to row j, i ̸= j. Then by cofactor

expansion along some row m that is neither i nor j, we have

det(A) = am1Am1 + · · ·+ am,k+1Am,k+1 (98)

Amr is the cofactor (−1)m+rdet(Mmr), which has identical rows and by inductive assumption has de-

terminant zero. Then det(A) = 0 and we are done. Since det(A) = det(A′), a square matrix with two

identical columns has transpose with two identical rows and the result follows.

Theorem 19. Recall the notations for EROs (Definition 10) and correspondence to their elementary

matrices (Lemma 3). Let A be square matrix, and

(i) B be a square matrix obtained by some ERO kRi. Then, det(B) = kdet(A).

(ii) B be a square matrix obtained by some ERO Ri ↔ Rj. Then, det(B) = −det(A).

(iii) B be a square matrix obtained by some ERO Ri + kRj. Then, det(B) = det(A).

(iv) E be some elementary matrix with size nrows(A)× nrows(A). Then det(EA) = det(E)det(A).

It turns out that this is quite useful because the determinants of elementary matrices are fairly easy to

compute. Only the elementary matrix corresponding to the swap operation is a non-triangular matrix

(Definition 28), but even the swap operation has corresponding elementary matrix where each sub-square

matrix has row/column with only a single scalar entry of one and the rest zero.
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Proof. We do not prove this theorem but this may be obtained via the rather mechanical cofactor

expansion and definition of matrix determinants (Definition 39).

Theorem 20. Recall the notations for CROs (Definition 15) and correspondence to their elementary

matrices. Let A be square matrix, and

(i) B be a square matrix obtained by some CRO kCi. Then, det(B) = kdet(A).

(ii) B be a square matrix obtained by some CRO Ci ↔ Cj. Then, det(B) = −det(A).

(iii) B be a square matrix obtained by some CRO Ci + kCj. Then, det(B) = det(A).

(iv) E be some elementary matrix with size nrows(A)× nrows(A). Then det(AE) = det(E)det(A).

Theorem 21 (Determinants and Invertibility). Square matrix A is invertible iff det(A) ̸= 0.

Proof. For square matrix A we may write B = Ek · · ·E1A, where each Ei is elementary matrix and

B is RREF. By Theorem 19, det(B) = det(A)Πki=1det(Ei). By Theorem 11, B = 1, and det(B) = 1.

Then det(A) ̸= 0 since ̸ ∃i s.t. det(Ei) = 0. If A is singular, then B has zero row (Definition 13).

By cofactor expansion (Theorem 3) along the zero row, det(B) = 0, then det(A) = 0 since again,

̸ ∃i s.t. det(Ei) = 0.

Theorem 22. For square matrix A,B order n and c ∈ R, the following hold:

1. det(cA) = cndet(A),

2. det(AB) = det(A)det(B),

3. If A is invertible, then det(A−1) = 1
det(A) .

Proof. -

1. This follows from Theorem 19 and seeing that cA is multiplying each of the n rows by c.

2. If A is singular, then AB is singular by Theorem 14. Then det(AB) = det(A)det(B) = 0. Other-

wise, matrix A may be represented by product of elementary matrices s.t.

det(AB) = det(E1 · · ·EkB) = det(B)Πki=1det(Ei) = det(B)det(A). (99)

3. Follows since det(A)det(A−1) = det(AA−1) = det(1) = 1. The first equality follows from part 2.

Definition 40 (Classical Adjoint). Let A be square matrix order n. Then the (classical) adjoint of A is

n× n matrix

adj(A) =


A11 A12 · · · A1n

A21 A22 · · · A2n

· · · · · · · · · · · ·
An1 An2 · · · Ann


′

, (100)

where Aij is (i,j) cofactor of A (Definition 39).
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Theorem 23 (Inverse by Adjoint). Let A be square matrix, then if A is invertible, we have

A−1 =
1

det(A)
adj(A). (101)

Proof. Let B = A · adj(A), then

bij = ai1A
′
1j + ai2A

′
2j + · · · ainA′

nj (102)

= ai1Aj1 + ai2Aj2 + · · · ainAjn. (103)

By definition of cofactor expansion (see Definition 39 and Theorem 3), see that

det(A) = bii. (104)

By Equation 103, see that when i ̸= j, then bij is the cofactor expansion along the row j of matrix A

where the entries of row i, j are both ai1, ai2, · · · ain. Then by Theorem 18, bij = 0 if i ̸= j. Then

A · adj(A) = det(A)1 =⇒ 1

det(A)
A · adj(A) = 1. (105)

Then the result follows.

Theorem 24 (Cramer’s Rule). Suppose Ax = b is linear system (Definition 5), where A is square matrix

order n. Then if Ai is the matrix obtained from replacing i-th column of A by b, and if A is invertible,

then the system has unique solution

x =
1

det(A)


det(A1)

det(A2)

· · ·
det(An)

 . (106)

Since

Ax = b↔ x = A−1b =
1

det(A)
adj(A) · b, (107)

then

xi =
b1A1i + b2A2i + · · ·+ bnAni

det(A)
=
det(Ai)

det(A)
. (108)

Exercise 17. For Am×n, Bn×p matrices, if Bx = 0 has infinitely many solutions, how many solutions

does ABx = 0 have? What about if Bx = 0 has only the trivial solution?

Proof. Suppose Bx = 0 has infinitely many solutions, and let this solution space be S. See that ∀s ∈ S,
ABs = A0 = 0. There are at least as many solutions as Bx, and this is in fact infinitely many. On other

hand, we cannot make comments about the solutions to ABx = 0 when Bx = 0 only has trivial solution.

For instance, if B =

(
1 0

0 1

)
, the cases for matrix A =

(
1 0

1 0

)
and A =

(
1 0

0 0

)
give rise to a linear

system with trivial solution and infinitely many solutions respectively.

Definition 41 (Trace). For square matrix A of order n, the matrix trace denoted tr(A) is the sum of

entries along the diagonals of A. For A,B square matrix both of order n, Cm×n, Dn×m, we have

1. that

tr(A+B) = tr(A) + tr(B). (109)
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2. that tr(cA) = ctr(A).

3. that tr(CD) = tr(DC).

4. that ̸ ∃A,B s.t. AB −BA = 1.

Proof. The first two properties are easy to proof by definitions of trace and matrix. For the third

statement, see that

(CD)ii =

n∑
j

cijdji, (110)

tr(CD) =

m∑
i

n∑
j

cijdji (111)

=

n∑
j

m∑
i

djicij . (112)

See that the RHS is precisely tr(DC). Lastly, since tr(AB − BA) = tr(AB) − tr(BA) = tr(AB) −
tr(AB) = 0 by the earlier parts and tr(1n) = n, it cannot be that AB −BA = 1.

Exercise 18 (Orthogonal Matrices). A square matrix is an orthogonal matrix if

AA′ = 1 = A′A. (113)

Suppose A,B is square matrix order n and orthogonal, then show AB is orthogonal.

Proof. See that (by Theorem 6)

AB(AB)′ = ABB′A′ = A1A′ = AA′ = 1, (114)

and that

(AB)′AB = B′A′AB = B′
1B = B′B = 1. (115)

Orthogonal matrices are treated in Section 3.1.5.3.

Exercise 19 (Nilponent Matrices). A square matrix is a nilpotent matrix if ∃k ∈ Z+ s.t. Ak = 0. Let

A,B be square matrices order n, and that AB = BA with nilpotent matrix A. Show that AB is nilpotent.

Show that we require the condition AB ̸= BA.

Proof. Let k be some constant s.t. Ak = 0. Then by Exercise 9 we have

(AB)k = AkBk =⇒ 0Bk = 0, (116)

so AB is nilpotent. No - we may prove by simple counterexample, say A =

(
0 1

0 0

)
, B =

(
0 0

1 0

)
.

Exercise 20. Show that for diagonal matrix A, the power of the diagonal matrix Ak is diagonal matrix

with entry akii, for i ∈ [nrows(A)].

Proof. Obtain this by simply writing out the mathematical induction proof.

Exercise 21. Prove or disprove the following:
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1. If A,B diagonal matrices of same size, BA = BA.

2. If A is square matrix, and A2 = 0, then A = 0.

3. If A is matrix s.t. AA′ = 0, A = 0.

4. A,B invertible =⇒ A+B invertible.

5. A,B singular =⇒ A+B singular.

Proof. -

1. This statement is true. See that ABij = aiibii and BAij = biiaii.

2. This statement is false by counterexample A =

(
0 1

0 0

)
.

3. This statement is true. For matrix A size m×n, AA′ is square matrix m×m. AA′
ii =

∑n
j aija

′
ji =∑n

j a
2
ij and this implies that if AA′ = 0, aij = 0 for all values i, j. A must be zero matrix.

4. This statement is false by counterexample:

A =

(
1 0

0 1

)
, B =

(
−1 0

0 −1

)
. (117)

5. This statement is false by counterexample:

A =

(
1 0

0 0

)
, B =

(
0 0

0 1

)
. (118)

Exercise 22. Let A be square matrix. Then

1. Show that if A2 = 0, then 1−A is invertible. Find the inverse.

2. Show that if A3 = 0, then 1−A is invertible. Find the inverse.

3. Find the relation at higher order powers.

Proof. -

1. Since

(1−A)(1+A) = 1−A2 = 1, (119)

then 1−A is invertible with inverse 1+A.

2. See that

(1−A)(1+A+A2) = 1−A3 = 1, (120)

so the inverse of 1−A is 1+A+A2.

3. As in previous parts, the general form matrix inverse of 1−A where An = 0 is

n−1∑
j=0

Aj . (121)
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Exercise 23. Suppose A,B is invertible square matrix order n, and that A+B is invertible. Then show

that A−1 +B−1 is invertible and find (A+B)−1.

Proof. If A+ B is invertible, then the matrix (A(A+ B)−1B) must be invertible. Consider the inverse

of this matrix, by Theorem 10 we have

(A(A+B)−1B)−1 = B−1(A+B)A−1 = (B−1A+ 1)A−1 = B−1 +A−1. (122)

We have effectively shown that the inverse of A−1 + B−1 exists and is (A(A + B)−1B). Then we may

write

A(A+B)−1B = (A−1 +B−1)−1 (123)

A−1A(A+B)−1BB−1 = A−1(A−1 +B−1)−1B−1 = (A+B)−1 (124)

and we are done.

Exercise 24. Let A,P,D be square matrices s.t.

A = PDP−1. (125)

Show that Ak = PDkP−1 for all k ∈ Z+.

Proof. See that Ak = PDP−1 PDP−1︸ ︷︷ ︸
k times

· · ·PDP−1. Then all the adjacent P−1P is identity and we arrive

at PDkP−1.

Exercise 25. Show that for matrix Am×n, Bn×m, and A
R≡ REF (A) with REF (A) having some zero

row, show that AB is singular.

Proof. If A
R≡ REF (A) with REF (A) having a zero row, then A = Ek · · ·E1REF (A) for elementary

matrices Ei, i ∈ [k], and AB = Ek · · ·E1REF (A)B. It follows that AB
R≡ REF (A)B and since REF (A)

has zero row, by the block matrix multiplication (Exercise 11) AB has REF (AB) where REF (AB) has

zero row. This can never be row equivalent to 1, and by Theorem 11, AB is singular.

Exercise 26. For matrix Am×n and m > n, see if is possible for AB to be invertible where B is matrix

size n×m.

Proof. AB will always be singular. The REF of A has at most n non-zero rows, and since m > n, REF

form of A has zero row. Then by the proof in Exercise 25, AB must be singular.

Exercise 27. Let A be some 2× 2 orthogonal matrix (Definition 18). Prove that

1. det(A) = ±1,

2. A =

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
for some θ ∈ R if det(A) = 1,

3. and otherwise A =

(
cos(θ) sin(θ)

sin(θ) cos(θ)

)
.

Proof. -
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1. det(1) = det(AA′) = det(A)det(A′) = det(A)2 = 1.

2. For matrix A =

(
a b

c d

)
, if A is orthogonal, A−1 = A′. Then using invertibility by adjoint

(Theorem 23), we can write(
a c

b d

)
=

1

det(A)

(
d −b
−c a

)
=

(
d −b
−c a

)
. (126)

So a = d, b = −c and by assumption a2 + c2 = ad − bc. Let a = cos(θ), c = sin(θ), the result

follows.

3. Follow part 2. with a→ −d, b→ c.

Exercise 28. Let A be invertible square matrix order n. Then

1. Show that adj(A) is invertible.

2. Find det(adj(A)), adj(A)−1.

3. Show det(A) = 1 =⇒ adj(adj(A)) = A.

Proof. -

1. By Theorem 23, we have

A

[
1

det(A)
adj(A)

]
= 1 =⇒

[
1

det(A)
A

]
adj(A) = 1 (127)

by Theorem 13.

2. By Theorem 22, since

det(1) =

(
1

det(A)

)n
det(adj(A)) det(A) = 1, (128)

then det(adj(A)) = det(A)n−1 and adj(A)−1 = 1
det(A)A.

3. From the general form A
[

1
det(A)adj(A)

]
= 1, we can write

adj(A)

[
1

det(adj(A))
adj(adj(A))

]
= 1. (129)

Then by part 2, we have

adj(adj(A)) = det(adj(A))adj(A)−1 = det(adj(A))
1

det(A)
A = det(A)n−1det(A)−1A = det(A)n−2A.

If det(A) = 1, then it follows that

adj(adj(A)) = A. (130)

Exercise 29. Prove or disprove the following statements.
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1. A,B square matrices of order n satisfies det(A+B) = det(A) + det(B).

2. If A is square matrix, det(A+ 1) = det(A′ + 1).

3. A,B square matrices of order n and A = PBP−1 for some invertible P satisfies det(A) = det(B).

4. A,B,C square matrices of order and det(A) = det(B) satisfies det(A+ C) = det(B + C).

Proof. -

1. This is false by counterexample:

A = 12, B = −12. (131)

2. This is true, since det(A+ 1) = det((A+ 1)′) = det(A′ + 1).

3. This is true, since

det(A) = det(PBP−1) = det(P )det(B)det(P−1) = det(B)det(P )det(P−1) = det(B) · 1. (132)

4. This is false by counterexample:

A = −12, B = 12, C = 12. (133)

3.1.3 Vector Spaces

3.1.3.1 Finite Euclidean Spaces

A vector may be specified by the direction of the arrow, and its length specified by its magnitude. Two

vectors are equal if the share direction and magnitude. If we denote a length of the vector u by ∥u∥,
then clearly the length of a scaled vector cu must be c∥u∥. The geometrical interpretations for vectors

are somewhat elusive past three dimensional spaces, however, it should be noted that the theorems

constructed in spaces of dimensions lower than three may be extended to higher finite dimensions, even

if it may not be visualized.

Definition 42 (Vector and Coordinates). A n-vector or ordered n-tuple of real numbers takes form

(u1, u2, · · · , un) (134)

where ui ∈ R, i ∈ [n]. The i-th component or coordinate of a vector is the entry ui.

Definition 43 (Vector Terminologies). Two n-vectors u, v are equal if ∀i ∈ [n], ui = vi. The vector

w = u+ v is s.t ∀i ∈ [n], wi = ui + vi. Scalar multiple of vector is the operation for some c ∈ R, w = cu

s.t. ∀i ∈ [n], wi = cui. The negative of vector u is the scalar multiple of vector where c = −1. The

subtraction of vector v from u is the addition of vector u to negative of vector v. A zero vector is one in

which ∀i ∈ [n], ui = 0.

See that we may identify vectors as special cases of matrices, that is either the row vector or column

vector (Definition 21).

Theorem 25 (Vector Operations). For n-vector u, v, w, the following hold:
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1. u+ v = v + u,

2. u+ (v + w) = (u+ v) + w,

3. u+ 0 = u = 0 + u,

4. u+ (−u) = 0,

5. c(du) = (cd)u,

6. c(u+ v) = cu+ cv,

7. (c+ d)u = cu+ du,

8. 1u = u.

Proof. These properties follow from their definitions. Otherwise, see that vectors are matrices, and use

the same result on matrices (i.e. Theorem 7, Definition 29 and Definition 31).

We give formal definitions for Euclidean spaces.

Definition 44 (Euclidean Space). A Euclidean space is the set of all n-vectors of real numbers. This is

denoted Rn. When n = 1, we usually just write R. For any element u ∈ Rn, u is n-vector.

See that the solution set of a linear system (Definition 5) must be a subset of the Euclidean space.

Exercise 30 (Expressions for Geometric Objects in the Euclidean Space). We show implicit and explicit

expressions for objects in low dimensional spaces.

1. See that a line in R2 may be represented (implicitly) by the set notation

{(x, y)|ax+ by = c} , (135)

where a, b, c ∈ R, and it is not the case that both a, b are zero. This may (explicitly) also be written

as {(
c− bt
a

, t

)
|t ∈ R

}
if a ̸= 0, or equivalently (136){(

t,
c− at
b

)
|t ∈ R

}
if b ̸= 0. (137)

2. A plane in R3 may be expressed

{(x, y, z)|ax+ by + cz = d} (138)

where a, b, c ∈ R not all zero and d ∈ R. We may also write explicitly as any of the equivalent

forms {(
d− bs− ct

a
, s, t

)
|s, t ∈ R

}
a ̸= 0, (139){(

s,
d− as− ct

b
, t

)
|s, t ∈ R

}
b ̸= 0, (140){(

s, t,
d− as− bt

c

)
|s, t ∈ R

}
c ̸= 0. (141)
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3. A line in R3 may be represented by the explicit set notation

{(a0 + at, b0 + bt, c0 + ct|t ∈ R} = {(a0, b0, c0) + t(a, b, c)|t ∈ R} , (142)

where a, b, c, a0, b0, c0 ∈ R, and not all a, b, c are zero.

Definition 45 (Set Cardinality). For finite set S, the number of elements in the set (cardinality) is

denoted |S|.

3.1.3.2 Linear Spans

Definition 46 (Linear Combination). Let ui, i ∈ [k] be vectors in Rn, then ∀ci ∈ R, i ∈ [k], the vector

k∑
i

ciui (143)

is said to be linear combination of the vectors ui, i ∈ [k].

Definition 47 (ei). Denote vectors ei ∈ Rn, as the vectors with 1 in the i-th entry and zero everywhere

else. That is

ei = (0 · · · 0 1︸︷︷︸
i-th

0 · · · 0). (144)

See that for u ∈ Rn, we can write u =
∑n
i uiei.

Definition 48 (Linear Span). Let S = {ui, i ∈ [k]} be set of vectors in Rn, then the set of all linear

combinations of ui, i ∈ [k], that is {
k∑
i

ciui | ∀i ∈ [k], ci ∈ R

}
(145)

is called the linear span of set S and is denoted as span(S) or span{u1, · · ·uk}.

See that we may express spans in different ways. For instance, a set V = {(2a+ b, a, 3b−a) |a, b ∈ R}
can be written as span{(2, 1,−1), (1, 0, 3)}.

Exercise 31. Show that

V = span{(1, 0, 1), (1, 1, 0), (0, 1, 1)} = R3. (146)

Proof. V = R3 if we may write arbitrary vector (x, y, z) as a linear combination of elements in the

spanning set of V (we formally define this later, but treat this for now to be the three vectors given).

That is, ∃a, b, c s.t.

a(1, 0, 1) + b(1, 1, 0) + c(0, 1, 1) = (x, y, z), (147)

and this corresponds to augmented matrix system 1 1 0 x

0 1 1 y

1 0 1 z

 GE (Def. 5)→

 1 1 0 x

0 1 1 y

0 0 2 z − x+ y

 . (148)

This system is consistent regardless of the values of x, y, z. On the other hand, supposed we performed

Gaussian Elimination and obtain zero row on the LHS, that is the coefficient matrix. Then, it is possible

for the last column to be a pivot column and for the system to be inconsistent (Result 2).
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We may generalize Exercise 31 to a more general question of whether a set of vectors span the entire

Euclidean space Rn.

Corollary 2. For set S = {ui, i ∈ [k]} ∈ Rn, S spans Rn iff for arbitrary vector v ∈ Rn, the linear system
represented by the augmented matrix (Definition 9) is consistent, where (A|v) and A is coefficient matrix

created from horizontally stacking the column vectors ui, i ∈ [k]. This is immediately made obvious if we

consider the discussion inside the matrix representation for linear systems in Definition 33. By Theorem

2, if REF (A) has no zero row, then the linear system is always consistent. Otherwise, the system is not

always consistent and span(S) ̸= Rn.

Theorem 26 (Cardinality of a Set and Its Spanning Limitations). For set S = {ui, i ∈ [k]} be set of

vectors in Rn, if k < n, then S cannot span Rn.

Proof. Since the coefficient matrix obtained from stacking k columns is size n×k, then the result follows

directly from Theorem 26.

Theorem 27 (Zero Vector and Span Closure). Let S = {ui, i ∈ [k]} ⊆ Rn. Then,

1. 0 ∈ span(S).

2. For any vi ∈ span(S) and ci ∈ R, i ∈ [r],
∑r
i civi ∈ span(S).

Proof. -

1. See that 0 =
∑
i 0ui ∈ span(S).

2. For each v ∈ span(S), they are linear combination of ui, i ∈ [k]. Then we may express

v1 = a11u1 + · · ·+ a1kuk, (149)

v2 = a21u1 + · · ·+ a2kuk, (150)

· · · (151)

vr = ar1u1 + · · ·+ arkuk, (152)

(153)

so that for linear combination

c1v1 + · · ·+ crvr = (c1a11 + c2a21 + · · ·+ crar1)u1 (154)

+(c1a12 + c2a22 + · · ·+ crar2)u2 (155)

+ · · · (156)

+(c1a1k + c2a2k + · · ·+ crark)uk. (157)

See this is in span(S).

Theorem 28 (Spanning Set of a Set Span). For S1 = {ui, i ∈ [k]}, S2 = {vj , j ∈ [m]} ⊆ Rn, span(S1) ⊆
span(S2) iff for all i ∈ [k], ui is a linear combination of vj , j ∈ [m].

Proof. →: Assume span(S1) ⊆ span(S2), then since S1 ⊆ span(S1) ⊆ span(S2), each ui is linear

combination of v’s.

←: Assume ∀i ∈ [k], ui is linear combination of v’s. Then, ui ∈ span(S2),∀i ∈ [k]. By Theorem 27, any

w that is linear combination of these u’s can rewritten as linear combination of the v’s, which is itself in

span(S2). Then we are done.
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Exercise 32. Discuss how one may approach to see if for some set S1, S2, whether span(S1) ⊆ span(S2).

Proof. Let the vectors in S1 be denoted ui, i ∈ [n] and in S2 be denoted vj , j ∈ [m]. Then in order to see if

each ui may be represented as a linear combination of the vj ’s, we may simultaneously solve for multiple

linear systems. These linear systems may be represented by an augmented matrix (V |u1|u2 · · · |uk), and
by Gaussian Elimination we are able to check if any of the systems (V |ui), i ∈ [n] are not consistent. V

here is obtained by horizontally stacking the column vectors for vi. This follows from the discussion made

in Definition 33 on constant matrix as linear combinations of the columns in the coefficient matrix.

Theorem 29 (Redundant Vectors). Let S = {ui, i ∈ [k]} ⊆ Rn, and if ∃j ∈ [k] s.t. uj is linear

combination of vectors in S\uj, then span(S) = span(S\uj).

Proof. The proof follows directly from applying Theorem 28.

Let u, v be two nonzero vectors. Then span{u, v} = su+ tv, ∀s, t ∈ R. If it is not the case that u//v,
then span{u, v} is a plane containing origin. In R2 space, the span is just the entire space. In R3, the

span can be written

span{u, v} = {su+ tv|s, t,∈ R} = {(x, y, z) | ax+ by + cz = 0}, (158)

where (a, b, c) is solution to the system of two linear equations u1a+ u2b+ u3c = 0, v1a+ v2b+ v3c = 0

for u = (u1, u2, u3), v = (v1, v2, v3).

For a line in R2,R3, see that any point on the line may be represented by a point x plus some vector

u that is scaled. That is, the line may be written by some

L = {x+ tu | t ∈ R} (159)

= {x+ w | w ∈ span(u)}. (160)

On the other hand, for some plane in R3, and u non-parallel to v, we may represent plane

P = {x+ su+ tv | s, t ∈ R} (161)

= {x+ w | w ∈ span{u, v}}. (162)

A generalization of this statement can be made in Rn. That is,

1. for x, u ∈ Rn, u ̸= 0, the set

L = {x+ w | w ∈ span{u}} (163)

is a line in Rn.

2. For x, u, v ∈ Rn, u.v ̸= 0, and u ̸= kv for some k ∈ R, then the set

P = {x+ w | w ∈ span{u, v}} (164)

is plane in Rn.

3. Take x, u1, u2, · · ·ur,∈ Rn the set

Q = {x+ w | w ∈ span{u1, · · · , ur}} (165)

is a k-plane in Rn where k is the dimension of the span{u1, · · · , ur}. Dimensions of vector spaces

are introduced in Section 3.1.3.6.
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3.1.3.3 Subspaces

Definition 49 (Subspace). For V ⊆ Rn, V is subspace of Rn if V = span(S), S = {u1, · · · , uk} for

some vectors ui∈[k] ∈ Rn. We say that V is the subspace spanned by S. We say that S spans V . We say

that u1, u2, · · · , uk span V . We say that S is the spanning set for V .

Definition 50 (Zero Space). From Definition 49 and Theorem 27, see that 0 ∈ Rn spans the subspace

that contains itself, that is span{0} = {0}. This is known as the zero space.

Recall the vectors ei’s defined as in (Definition 47). For vectors ei, i ∈ [n] ∈ Rn, see that for all

u = (u1, · · · , un) ∈ Rn, we may write u =
∑n
i uiei, so it follows that Rn = span({e1, · · · , en}). Trivially,

Rn is subspace of itself. In abstract linear algebra texts, the definition of subspace is relaxed to permit

abstract objects and are usually provided as follows (see that Theorem 27 holds under this definition):

Definition 51 (Subspace). Let V be non-empty subset of Rn. Then V is subspace of Rn iff

∀u, v ∈ V,∀c, d ∈ R, cu+ dv ∈ V. (166)

Theorem 30 (HLS Solution Space). The solution set of a HLS (Definition 18) in n variables is subspace

of Rn. We call this the solution space of the HLS.

Proof. Let the matrix representation of the HLS be Ax = 0. If the HLS only has trivial solution, then

the solution space is spanned by the trivial solution and is the zero space. Next, if it has non-trivial

solution, then it has infinitely many solutions (see Lemma 2). Then by Definition 33, we may let solutions

x =
∑ncols(A)
i ai where ai is column vector of the coefficient matrix A. That is, the solution space is

spanned by the columns of A, and is therefore subspace of Rn.

If we solve some linear system and arrive at the general solution, it is easy to find the spanning

vectors. For instance, let the general solution bexy
z

 =

2s− 3t

s

t

 = s

2

1

0

+ t

−30
1

 . (167)

The solution space is therefore {(2s− 3t, s, t) | s, t ∈ R} = span{(2, 1, 0), (−3, 0, 1)}.

3.1.3.4 Linear Independence

We saw the concept of vector redundancy in a spanning set in Theorem 29. Here, we give formal

treatment to such vectors with the concept of linear independence.

Definition 52 (Linear (In)Dependence). For set S = {ui, i ∈ [k]} ∈ Rn, consider
∑k
i ciui = 0, for

ci ∈ R, i ∈ [k]. This has a HLS representation (Definition 18) where the coefficient matrix U is obtained

from stacking the vectors horizontally, s.t U =
(
u1 · · · uk

)
and c =

 c1

· · ·
ck

 is the variable matrix.

Then see that the zero solution satisfies the system always. The set S is said to be linearly independent

and u1, · · · , uk are said to be linearly independent if the HLS only has the trivial solution. Otherwise,

∃ai∈[k] ̸= 0 and
∑k
i aiui = 0; a non-trivial solution exists. Then S is a linearly dependent set and

u1, · · ·uk are said to be linearly dependent vectors. For brevity, we use the notations

LIND(S) = LIND{u1, u2, · · · , uk} (168)
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to indicate linear independence and

¬LIND(S) = ¬LIND{u1, u2, · · · , uk} (169)

to indicate linear dependence.

Let S = {u} be a subset of Rn, then S is linearly dependent iff u = 0. For S = {u, v} ⊂ Rn, S
is linearly dependent iff u = av, for some a ∈ R. If 0 ∈ S for arbitrary S ∈ Rn, it must be linearly

dependent.

Theorem 31 (No Redundancy of Linearly Independent Set). Let S = {ui, i ∈ [k]} ⊂ Rn where k ≥ 2.

Then, S is linearly dependent iff ∃i ∈ [k] s.t. ui is a linear combination of vectors in S\ui. Equivalent

statement by the iff condition is that S is linearly independent iff no vector in S may be written as linear

combination of the other vectors.

Proof. →: If LIND(S), then
∑n
i aiui = 0 has non-trivial solution by Definition 52. Without loss of

generality, let ai ̸= 0, then

ui = −
a1
ai
− a2
ai
u2 − · · · −

ai−1

ai
ui−1 −

ai+1

ai
ui+1 − · · · −

ak
ai
uk. (170)

We have showed directly that ui is l.c of the other vectors. ←: If ∃ui =
∑k
j ̸=i ajuj , for some real numbers

aj∈[k],j ̸=i. Then let ai = −1, for which we have

a1u1 + · · ·+ ai−1ui−1 + aiui + ai+1ui+1 + · · ·+ akuk (171)

= ui − ui (172)

= 0. (173)

So we have found some non-zero solution, and hence by definition, S must be linearly dependent.

Recall Theorem 26 on the minimum size of a spanning set required for Rn. Here we give statements

that allow us to determine the maximum size of the spanning set for Rn that is linearly independent.

Theorem 32. Let S = {ui, i ∈ [k]} ∈ Rn. If k > n, then S is linearly dependent.

Proof. The proof follows immediately by seeing that the HLS representation by stacking columns of u

has non-trivial solutions by Lemma 2. S is linearly dependent by Definition 52 as a result.

Theorem 33 (No Redundancy of Non-Linearly Combinable Element). Let ui, i ∈ [k] be linearly inde-

pendent vectors in Rn. If uk+1 ∈ Rn, and it is not l.c. of ui, i ∈ [k], then {ui, i ∈ [k]}∪{uk+1} is linearly
independent.

Proof. We show that the vector equation

k+1∑
i

ciui = 0 (174)

has only trivial solution. See that ci, i ∈ [k] must be zero by itself in the HLS in k variables by assumption

and definition for linear independence (Definition 52). We just need to show that ck+1 = 0. Suppose

not, then we may write

uk+1 = −
k∑
i=1

ci
ck+1

ui (175)

and this is a contradiction since we assumed no linear combination is possible. So, ck+1 must be zero.

Therefore, the HLS represented for ui, i ∈ [k + 1] must have only the trivial solution.
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3.1.3.5 Bases

Definition 53 (Vector Spaces and Subspaces of Vector Space). A set V is vector space if either V = Rn

or V is subspace (Definition 49, 51) of Rn for some n ∈ Z+. For some vector space W , the set S is

subspace of W if S is a vector space contained inside W .

We may be interested in finding the smallest set possible s.t. all vector in some vector space V may

be represented as a linear combination of the elements in the set.

Definition 54 (Basis). Let S = {u1, u2, · · · , uk} be subset of a vector space V (Definition 53). Then we

say that S is a basis for V if (i) S is linearly independent (Definition 52) and (ii) S spans V (Definition

48). When V = {0}, the zero space, set ∅ to be the basis.

That is, a basis for a vector space V must contain the smallest possible number of elements that

can span V , since it must have no redundant vectors. Recall from Theorem 28 that for vector space V

spanned by some set S, if all elements in S may be represented by some linear combination of vectors in

S̃, and S̃ is linearly independent, then S̃ must be basis for span(S) = V by definition of basis (Definition

54).

Theorem 34 (Unique Representation of Elements on Basis). If S = {ui, i ∈ [k]} is basis for vector

space V , then ∀v ∈ V , v has unique representation v =
∑k
i ciui.

Proof. Suppose ∃ci∈[k], dj∈[k] s.t. v =
∑k
i=1 ciui =

∑k
j=1 djuj , then by subtracting the two equations,

get

(c1 − d1)u1 + (c2 − d2)u2 + · · ·+ (ck − dk)uk = 0. (176)

But since S is linearly independent (it is basis), the only solution is the trivial solution, so ∀i ∈ [k], ci =

di.

By Theorem 34, we should be able to specify an arbitrary vector in some vector space w.r.t to the

coefficients of the l.c. on its basis.

Definition 55 (Basis Coordinates). Let S = {ui, i ∈ [k]} be basis for a vector space V and v ∈ V , then

since v may uniquely expressed by some ci, i ∈ [k] (by Theorem 34) as v =
∑k
i ciui, we say that the

coefficients ci are coordinates of v relative to basis S and call the vector (v)S = (c1, c2, · · · , ck) ∈ Rk the

coordinate vector of v relative to basis S.

To find the coordinate vector of some v relative to some basis S, we may simply solve for the linear

system S̃x = v, where S̃ is coefficient matrix obtained by stacking the column vectors of elements of S.

We give formal definition for a collection of vectors that we denoted ei (Definition 47).

Definition 56 (Standard Basis). Let E = {ei, i ∈ [n]} where ei is the vector of all zeros, except for a

single entry of one in the ith-coordinate. Then it is easy to see that E spans Rn, and that LIND(E). E

is basis for Rn. In particular, we call this the standard basis, and see that

(u)E = (u1, · · · , un) = u. (177)

Corollary 3. By Definition 55, for basis S of V , ∀u, v ∈ V , u = v iff (u)S = (v)S. Additionally, by

Definition 55, ∀vi∈[r] ∈ V , ci∈[r] ∈ R, see that

(c1v1 + c2v2 + · · ·+ crvr)S = c1(v1)S + c2(v2)S + · · ·+ cr(vr)S . (178)
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Theorem 35 (Linear Dependence Duality). Let S be basis for vector space V (Definition 54, 53), and

|S| = k. Let vi ∈ V, i ∈ [r], then

1. LIND({vi, i ∈ [r]})↔ LIND({(vi)S , i ∈ [r]}) for vectors (vi)S ∈ Rk.

2. span{vi, i ∈ [r]} = V iff span{(vi)S , i ∈ [r]} = Rk.

Proof. -

1. By Corollary 3, we can write
∑r
i civi = 0 ↔ (

∑r
i civi)S = (0)S ↔

∑r
i ci(vi)S = (0)S , where

(0)S ∈ Rk. The first equality has non-trivial solution iff the last equality has the non-trivial

solution and we are done.

2. Assume S = {ui, i ∈ [k]}. →: Assume span{vi, i ∈ [r]} = V . Then by closure (Theorem 27) and

basis definitions (Definition 54), we may write

∀a = (a1, · · · , ak) ∈ Rk, w :=

k∑
i

aiui ∈ V =

r∑
j

cjvj (179)

for some constants cj , j ∈ [r]. By basis coordinate (Definition 55) and Corollary 3, we may write

a = (w)S = (c1v1 + · · ·+ crvr)S = c1(v1)S + · · ·+ cr(vr)S . (180)

Then it follows that (vi)S , i ∈ [r] spans Rk. ←: On the other hand, suppose span{(vi)S , i ∈ [r]} =
Rk. See that ∀w ∈ V, (w)S ∈ Rk so ∃ci, i ∈ [r] s.t.

(w)S =

r∑
i

ci(vi)S = (

r∑
i

civi)S , (181)

and therefore w =
∑r
i civi by Corollary 3. Since we picked arbitrary w, we are done.

3.1.3.6 Dimensions

Theorems 26 and 32 give statements of the number of elements required for a basis for a vector space

that is Rk - here we use the duality given by Theorem 35 to make comments on arbitrary real vector

space V .

Theorem 36 (Vector space has fixed size basis). Let V be vector space with basis S, |S| = k. Then

1. Any subset of V with more than k vectors is always linearly dependent, and

2. Any subset of V with less than k vectors cannot span V .

Proof. -

1. Let T = {vi, i ∈ [r]} ⊂ V , and r > k. Then their coordinate vectors (vi)S are set of r vectors in

Rk, and since r > k, by Theorem 32, (vi)S , i ∈ [r] is linearly dependent, then by duality (Theorem

35) it follows that ¬LIND(T ).

2. Let Q = {vi, i ∈ [t]},⊂ V and t < k, then (vi)S , i ∈ [t] may not span Rk (Theorem 26) and Q

cannot span V by duality (Theorem 35).

37



Theorem 36 gives us a metric for the ‘size’ of a vector space. We formalize this with dimensions.

Definition 57 (Dimensions, dim). The dimension of a vector space V , denoted dim(V ) is the number

of vectors in any basis for V . Since zero space has basis ∅ (Definition 54), dim(0) = 0.

We can see that the dimension of a vector space denote the concept of degrees of freedom. Consider

the subspace W = {(x, y, z)|y = z}. We may write ∀w ∈ W,w := (x, y, y) = x(1, 0, 0) + y(0, 1, 1), s.t.

W = span{(1, 0, 0), (0, 1, 1)}. Additionally, (1, 0, 0), (0, 1, 1) are linearly independent and so they form

basis. dim(W ) = 2.

Exercise 33 (Finding the Nullity and Basis of a HLS Solution Space). By considering the (R)REF of an

HLS (Definition 18), it is easy to see that the dimension of the solution space is the number of non-pivot

columns (Definition 16) in the (R)REF form. To see this, suppose that the RREF representation of some

HLS in variables (v, w, x, y, z) may be written to be
1 1 0 0 1 0

0 0 1 0 1 0

0 0 0 1 0 0

0 0 0 0 0 0

 , (182)

then by back substitution (Exercise 4), see that the linear system may have general solution
v

w

x

y

z

 =


−s− t
s

−t
0

t

 = s


−1
1

0

0

0

+ t


−1
0

−1
0

1

 (183)

for s, t ∈ R. Then see that the dimension of the solution space is 2, and in fact we found the basis for the

solution space {(−1, 1, 0, 0, 0), (−1, 0,−1, 0, 1)}. This solution space is known as the nullspace, and we

have found the basis of the nullspace. The cardinality of this basis is known as the nullity. The nullspace,

basis, and nullity are discussed later in Definition 64, Definition 54 and Definition 65 respectively.

Theorem 37. Let V be vector space, dimension k (Definition 57) and S ⊂ V . The statements are

equivalent for:

1. S is basis for V .

2. LIND(S) ∧ |S| = k.

3. S spans V and |S| = k.

That is, if we know |S| = k, we only need to check if span(S) = V or LIND(S) to show it is basis for

V .

Proof. The statements for 1 → 2, 1 → 3 follow from Theorem 36. Additionally, to show 2 → 1, assume

S is linearly independent and |S| = k. Suppose it is not basis for V , then take the vector u ∈ V ∧ u ̸∈
span(S). Then by Theorem 31, S′ = S ∪ {u} is set of k + 1 linearly independent vectors, and Theorem

36 asserts the contradiction. To show 3 → 1, assume S spans V , |S| = k and suppose S is not basis.

Then ∃v ∈ S s.t. v =
∑
si∈S\v cisi for some constants ci ∈ R, and S̃ := S\v is set of k− 1 vectors where

span(S̃) = span(S) = V by Theorem 29. Theorem 36 asserts the contradiction.
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Theorem 38 (Dimension of a Subspace). Let U be subspace (Definition 49) of vector space V . Then

dim(U) ≤ dim(V ). In particular, U ̸= V =⇒ dim(U) < dim(V ).

Proof. Let S be basis for U , so S ⊆ U ⊆ V and since it is basis, S is linearly independent subset of V .

By part 1, Theorem 36, since S is linearly independent, it must not have more than k = dim(V ) vectors,

that is dim(U) = |S| ≤ dim(V ). On the other hand, assume |S| = dim(U) = dim(V ), then Theorem

37 asserts that the linear independence of S and set cardinality makes V = span(S) = U . So we have

shown that

dim(U) = dim(V ) =⇒ U = V (184)

Since (dim(U) ≤ dim(V )) ∧ (dim(U) ≥ dim(V )) ↔ dim(U) = dim(V ), we have effectively showed the

contrapositive of the statement, and by logical equivalency we are done.

Theorem 39 (Invertibility of Square Matrices, 2). If A is square matrix order n, then the following

statements are equivalent:

1. A is invertible.

2. Ax = 0 has only the trivial solution.

3. RREF of A is identity 1 matrix.

4. A can be expressed as Πni Ei, where Ei are elementary matrices.

5. det(A) ̸= 0.

6. Rows of A form basis for Rn.

7. Columns of A form basis for Rn.

Proof. See proof in Theorem 11 for the iff conditions for statement 1↔ 4. 1↔ 5 is proved by Theorem

21. 6↔ 7 by Theorem 10 - rows of A are columns of A′ and A invertible iff A′ is invertible. We are done

if we show any i ∈ [5] ↔ 7. We show 2 ↔ 7. If Ax = 0 only has trivial solution, then the columns are

linearly independent by the statements given in Definition 52. There are n columns. Then by Theorem

37, {a1, a2, · · · an} where ai is i-th column of A is basis of Rn.

3.1.3.7 Transition Matrices

Definition 58 (Row/Column Vector Representation of Basis Coordinates). Recall that for basis S =

{ui, i ∈ [k]} of vector space V and v ∈ V , v has unique coordinate vector representation (Definition 55,

Theorem 34) written

(v)S = (c1, · · · , ck) (185)

and we write also write this as a column vector

[v]S =


c1

c2

· · ·
ck

 . (186)
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It is trivial that bases are not unique. For two bases S, T spanning vector space V , we may be

interested in the relation [w]S ∼ [w]T . This relation is captured by the transition matrix. In particular,

let S = {ui, i ∈ [k]}, T = {vi, i ∈ [k]} and some w ∈ V be written w =
∑
ciui s.t. [w]S =


c1

c2

· · ·
ck

, then

since each ui’s may be represented by the vectors in T , suppose

∀i ∈ [k], ui = a1iv1 + a2iv2 + · · ·+ akivk. (187)

That is, each ui ∈ [k] has T -basis coordinate representation [ui]T =


a1i

a2i

· · ·
aki

 and see that

w =

k∑
j

(c1aj1 + c2aj2 + · · ·+ ckajk)vj . (188)

That is,

[w]T =


c1a11 + c2a12 + · · · cka1k
c1a21 + c2a22 + · · · cka2k

· · ·
c1ak1 + c2ak2 + · · · ckakk

 =
(
[u1]T [u2]T · · · [uk]T

)
[w]S . (189)

Define P =
(
[u1]T [u2]T · · · [uk]T

)
, then [w]T = P [w]S for all w ∈ V and we call P the transition

matrix.

Definition 59 (Transition Matrix). Let S = {u1, · · · , uk} and T be two bases for vector space. Then

P = ([u1]T · · · [uk]T ) is said to be transition matrix from S to T , and [w]T = P [w]S holds for all w ∈ V .

Wemay find the transition matrix by the Gaussian Elimination (or Gauss Jordan) algorithm discussed

in Theorem 5 and using the interpretations for linear systems as in Definition 33. For two bases S =

{ui, i ∈ [k]}, T = {vi, i ∈ [k]} respectively, we solve for the system with augmented matrix representation

(Definition 9) (T |u1|u2 · · · |uk), where T is coefficient matrix obtained from stacking column vectors vi,

i ∈ [k]. Then the column vectors on the RHS of the RREF augmented matrix are the weights for the

linearly combined columns of T . In fact, the RHS of the augmented matrix from the first | onwards is

precisely the transition matrix P : [w]S → [w]T .

Theorem 40 (Properties of the Transition Matrix). Let S, T be two bases of vector space V and P be

transition matrix from S → T , then

1. P is invertible and

2. P−1 is the transition matrix from T → S.

Proof. It is easy to both logicize this argument and to prove it. Note that for S = {ui, i ∈ [k]}, the
vectors [ui]S , i ∈ [k] is standard basis (Definition 56) in Rk. Let Q be transition matrix from T to S.

Then see that for i ∈ [k], the i-th column of QP is written QP [ui]S = Q[ui]T = [ui]S . Then stacking the

columns [ui]S , i ∈ [k] gives us 1k.
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Exercise 34. Discuss if the following is true:

1. If S1, S2 are finite subsets of Rn, then span(S1 ∩ S2) = span(S1) ∩ span(S2).

2. If S1, S2 are finite subsets of Rn, then span(S1 ∪ S2) = span(S1) ∪ span(S2).

Proof. -

1. False, consider the sets S1 = {(1, 0), (0, 1)}, S2 = {(1, 0), (0, 2)}.

2. False, consider the sets S1 = {(1, 0)}, S2 = {(0, 1)}.

Exercise 35 (Coset). Let W be subspace of Rn and v ∈ Rn, then

W + v = {u+ v | u ∈W} (190)

is said to be coset of W containing v. Give geometric interpretations for the coset W + v when

1. W = {(x, y)|x+ y = 0}, v = (1, 1).

2. W = {(c, c, c)|c ∈ R}, v = (0, 0, 1).

3. W = {(x, y, z)|x+ y + z = 0}, v = (2, 0,−1).

Proof. -

1. The line x+ y = 2 in R2.

2. The line {(0, 0, 1) + c(1, 1, 1)|c ∈ R} in R3.

3. The plane x+ y + z = 1 in R3.

The union of subspaces are rarely a subspace; we define sums of subspaces.

Definition 60 (Subset Addition). Suppose Ui, i ∈ [m] are subsets of V , then we denote the sum of

subsets U1 + · · ·+ Um to be the set of all possible sum of elements Ui, i ∈ [m], that is

m∑
i

Ui =

{
m∑
i

ui| ∀i ∈ [m], ui ∈ Ui

}
. (191)

Exercise 36. Let V,W be subspaces of Rn, then show that V +W (see Definition 60) is subspace of Rn.

Proof. Let V = span{vi, i ∈ [m]},W = span{wi, i ∈ [n]}, then

V +W = {v + w|v ∈ V,w ∈W} (192)

= {
∑

aivi +
∑

bjwj | ai, bj ∈ R, ∀i ∈ [m],∀j ∈ [n]} (193)

= span{v1, · · · , vm, w1, · · · , wn}, (194)

so V +W is subspace of Rn.

Exercise 37. Let A be m× n matrix, and VA = {Au|u ∈ Rn}. Show that VA is subspace of Rm. Let A

be square matrix order n. Show WA := {u ∈ Rn|Au = u} is subspace of Rn.
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Proof. Let A = (c1 · · · cn) be column-stacked representation of A, then ∀u ∈ Rn, see that Au =
∑n
i uici,

so VA = span{ci, i ∈ [n]} is subspace of Rn. Next, see that

Au = u↔ (A− 1)u = 0, (195)

and since WA is the solution set of (A−1)u = 0, WA must be subspace of Rn. In fact, VA is an instance

of a column space and WA is an instance of a nullspace. These are discussed in (Definition 61 and

Definition 64).

Exercise 38. Let V,W be subspaces of Rn. Show that V ∩W is subspace of Rn. Show V ∪W is subspace

of Rn iff V ⊆W or W ⊆ V .

Proof. Both V,W contain zero, so V ∩W is nonempty. Let u, v be vectors in V ∩W and a, b ∈ R, then
au+ bv is in V by span closure (Theorem 27) and au+ bv is also in W by the span closure. So it must

be in V ∩W and we are done with the first part.

We show the second statement. ←: suppose V ⊆ W , then V ∪W = W and this is subspace of Rn.
Also, if W ⊆ V , then W ∪ V = V is also subspace of Rn. → Suppose V ∪W is subspace, and suppose

that V ̸⊆ W . Then ∃y ∈ V s.t. y ∈ V ∧ y ̸∈ W , and since V ∪W is subspace, for arbitrary x ∈ W , see

x + y ∈ V ∪W . It follows that either x + y ∈ V or x + y ∈ W . Assume it is in W , then −x ∈ W and

writing (x + y) − x = y ∈ W and this is contradiction. So x + y ∈ V . Since V is subspace, −y ∈ V ,

x = (x+ y)− y ∈ V and therefore W ⊆ V .

Exercise 39. Let ui, i ∈ [k] be vectors ∈ Rn, and P be some square matrix order n.

1. Show that Pui, i ∈ [k] linearly independent implies ui, i ∈ [k] linearly independent.

2. Show that for linearly independent ui, i ∈ [k], Pui, i ∈ [k] linearly independence is guaranteed only

if P is invertible.

Proof. -

1. See that

k∑
i

ciui = 0 =⇒ P (

k∑
i

ciui) = P0 =⇒
k∑
i

ciPui = 0. (196)

2. See that

k∑
i

ciPui = 0 =⇒ P (

k∑
i

ciui) = 0 =⇒
k∑
i

ciui = P−10 = 0. (197)

Each ci must be zero by linear independence (Definition 52). Verify the last assertion with a

counter example using the matrices

u1 =

1

0

0

 , u2 =

0

1

0

 , P =

1 1 0

1 1 0

0 0 0

 , (198)

where Pu1 = Pu2.
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Exercise 40. Let V ∈ Rn, V ̸= ∅. Show V is subspace of Rn iff ∀u, v ∈ V, c, d,∈ R, cu+ dv ∈ V . Show

that the largest set of linearly independent vectors in V must span V .

Proof. By Theorem 27, if V is subspace, ∀u, v ∈ V , c, d ∈ R, cu+ dv ∈ V . On the other hand, suppose

∀u, v ∈ V , cu + dv ∈ V for c, d ∈ R. We can use this recursively to show that ∀ui, i ∈ [k] ∈ V ,

span{ui, i ∈ [k]} ⊆ V . We can show the last statement by contradiction. Suppose not, then ∃v ∈ V
but it is not l.c. of some largest set S of linearly independent vectors. Then S ∪ {v} is set of linearly

independent vector (Theorem 31) and we obtained a larger linearly independent set, a contradiction.

Exercise 41. Let V be vector space.

1. Suppose S ⊆ V s.t. span(S) = V . Show ∃S′ ⊆ S s.t S′ is basis for V .

2. Suppose T ⊆ V s.t. T is linearly independent, then show ∃T ′ basis for V s.t T ⊆ T ′.

Proof. We show both parts by presenting an algorithm that allows us to obtain precisely the sets specified.

1. span(S) = V , so |S| ≥ n. If |S| = n, then we are done by S′ = S. Else, S is linearly dependent

by (Theorem 36) and ∃v ∈ S that is l.c of the remaining vectors; S′ = S\{v} satisfies span(S′) =

span(S). Repeat until |S| = n.

2. LIND(T ), so |T | ≤ n by Theorem 36. If |T | = n then we are done by Theorem 36. Otherwise,

∃v ∈ V but v ̸∈ span(T ). Let T ′ = T ∪ {v} where T ′ is linearly independent by Theorem 31.

Repeat until ∥T ′∥ = n and we have basis as specified.

Exercise 42. Let V be vector space with dim(V ) = n, then show ∃ui, i ∈ [n+ 1] s.t. ∀v ∈ V , v may be

expressed as l.c of ui’s with non-negative coefficients.

Proof. Take basis {ui|i ∈ [n]} spanning V , and write un+1 = −u1−u2 · · ·−un. Then ∀v ∈ V , v =
∑n
i aiui

for some ai ∈ R, i ∈ [n]. Define a := min{0, a1, · · · , an}, s.t

v = (a1 − a)u1 + (a2 − a)u2 + · · ·+ (an − a)un + (−a)un+1 (199)

=

n∑
i

aiui + a

n∑
i

(−1)ui + (−a)un+1. (200)

Each ai − a ≥ 0, −a ≥ 0 and we are done.

Theorem 41 (Subset Addition Bound). Let V,W be subspaces of Rn. Then,

dim(V +W ) = dim(V ) + dim(W )− dim(V ∩W ). (201)

Proof. Let {ui, i ∈ [k]} be basis spanning V ∩ W , then by Theorem 41, there ∃vi ∈ V, i ∈ [m] s.t

{u1, · · · , uk, v1, · · · , vm} is basis for V . Also, ∃wi, i ∈ W, i ∈ [n] s.t. {u1, · · · , uk, w1, · · · , wn} span W .

Then see that

V +W = span{ui, vj , wl, i ∈ [k], j ∈ [m], l ∈ [n]}. (202)

Consider vector equation

k∑
i

aiui +

m∑
j

bjvj +

n∑
l

clwl = 0. (203)
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Since
∑n
l clwl = −(

∑k
i aiui +

∑m
j bjvj) ∈ V ∩W , then ∃di ∈ R, i ∈ [k] s.t.

∑n
l clwl =

∑k
i diui. Then

c1w1 + · · ·+ cnwn − d1u1 − · · · − dkuk = 0, (204)

and since the LIND{ui, wl, i ∈ [k], l ∈ [n]} it follows that constants c’s and d’s are all equal to zero.

Substitute c’s = 0 into the vector equation to get

a1u1 + · · · akuk + b1v1 + · · ·+ bmvm = 0, (205)

by LIND{ui, vj , i ∈ [k], j ∈ [m]} it follows that constants a’s and b’s are all zero. So the vector equation

has only the trivial solution; the u, v, w’s are all linearly independent. See that we get the relation

dim(V +W ) = k +m+ n = (k +m) + (k + n)− k = dim(V ) + dim(W )− dim(V ∩W ). (206)

Exercise 43. Determine which of these are true.

1. If S1, S2 are bases for V,W respectively, where V,W are subspaces of a vector space, then S1 ∩ S2

is basis for V ∩W .

2. If S1, S2 are bases for V,W respectively, where V,W are subspaces of a vector space, then S1 ∪ S2

is basis for V +W .

3. If V,W are subspaces of vector space, then ∃ basis S1 for V and basis S2 for W s.t. S1∩S2 is basis

for V ∩W .

4. If V,W are subspaces of vector space, then ∃ basis S1 for V and basis S2 for W s.t. S1∪S2 is basis

for V +W .

Proof. -

1. False. Consider S1 = {(1, 0), (0, 1)}, S2 = {(1, 0), (0, 2)}.

2. False. Consider span{(1)}, span{(2)} = R.

3. True. These bases are found and reasoned with in the proof for Theorem 41.

4. True. These bases are found and reasoned with in the proof for Theorem 41.

3.1.4 Matrix Vector Spaces

Matrices and vector spaces were defined (Definition 19, Definition 53) and we would like to study the

vector spaces that are associated with a matrix. In particular, we are interested in the row space, column

space and the nullspace of some matrix.
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3.1.4.1 Row, Column Spaces

Definition 61 (Row Spaces and Column Spaces). Let A = (aij) be m× n matrix with columns denoted

(c1, · · · cn) and rows denoted


r1

r2

· · ·
rm

 representing A. Then the row space is the subspace of Rn spanned by

ri, i ∈ [m], that is span{ri, i ∈ [m]} ⊆ Rn. The column space is the subspace of Rm spanned by ci, i ∈ [n],

that is span{ci, i ∈ [n]} ⊆ Rm. For brevity, we denote the row space and column space associated with

matrix A as rowSpace(A), colSpace(A) respectively.

It is easy to see that row space A and column space A′ are identical, and that column space A and

row space A′ are identical by definition of transpose (Definition 34).

We have discussed methods to check if some set of vectors are linearly dependent by considering its

HLS solution (Definition 52). We want to obtain the basis for row spaces and column spaces respectively.

Observe that for matrices A,B with RREF (A) = RREF (B), then A
R≡ B.

Theorem 42 (Row Space Invariance Over EROs). Let A
R≡ B, then the row spaces of A,B are identical.

That is, the EROs (Definition 10) preserve the row space of a matrix.

Proof. Let A =


r1

r2

· · ·
rm

 be m rows for matrix A. The proofs can be obtained by performing the EROs on

elements of the set S = {ri, i ∈ [m]} to obtain S̃ and observing that span(S) = span(S̃). For instance,

for ERO kRi, picking some ri ∈ S and S̃ = S\{ri} ∪ {kri} preserves the span. We omit the proofs for

the other EROs, but they should not be difficult to obtain or reason with.

Recall column space A is row space A′, and so column space A has basis formed by taking the non-

zero rows in REF (A′). We may employ other methods, however. Note that EROs do not preserve the

column space of matrix; consider the simple example of A
R≡ B where A =

(
0 0

1 0

)
, B =

(
1 0

0 0

)
and

observe they do not share column space.

Theorem 43. Let A
R≡ B, then prove that

1. Set of columns in A is linearly independent iff set of corresponding columns in B is linearly inde-

pendent.

2. Set of columns in A form basis for colSpace(A) iff set of corresponding columns in B is basis for

colSpace(B).

Proof. -

1. Let A = (a1 · · · an) be the column stacked representation and B both be b × n matrices. Assume

A
R≡ B s.t.

B = Ek · · ·E1A. (207)

Define P = Ek · · ·E1, then B = PA = (Pa1 · · ·Pan), and by Theorem 39, P is invertible. By part

1, part 2 of Exercise 39, subset columns aj ’s. j ∈ [m],m ≤ n are linearly independent iff the Paj ’s

are linearly independent.
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2. →:Suppose some subset of columns S1 are basis for colSpace(A). The first part asserts the cor-

responding columns (say S2, where S2 = {Ps|s ∈ S1}) in B are linearly independent. Clearly,

span(S2) ⊆ colSpace(B). So we just need to show that colSpace(B) ⊆ span(S2). Take u ∈
colSpace(B), for some real ci, i ∈ [n]. we have u =

∑n
i ciPai. Since span(S1) = colSpace(A), then

a1, · · · an ∈ span(S1) and so Pa1, · · ·Pan ∈ span(S2) since the elements of S2 were obtained by

applying P to each element of S1. We are done.

Theorem 44 (Linear Independence at Pivot Rows and Columns of REF Form). Proof that the nonzero

rows of a matrix and pivot columns of a matrix are linearly independent.

Proof. That is, we want to prove that pivot rows and pivot columns are linearly independent. First,

we show that the pivot rows (nonzero rows) of REF (A) for some matrix Am×n is linearly independent.

Consider

REF (A) =


r1

r2

· · ·
rj

· · ·

 (208)

for j non-zero rows. Each non-zero row has a leading entry (Definition 12). Denote the access operator

[·], s.t. r[l] refers to the l-th coordinate of vector r. Then by Definition of REFs (Definition 15), see that

each ri has leading entry to the left of rj , when j > i. For each non-zero row, denote the leading entry

for row ri to be at coordinate li, then see that ri[li] ̸= 0, and lj > li when j > i and ∀i, j, rj [li] = 0 when

i < j. Consider the equation
∑j
i ciri = 0. Suppose c1 = 0, then see that

(

j∑
i

ciri)[l1] =

j∑
i

ci(ri[l1]) = c1r1[l1] + c2r2[l1] + · · · cjrj [l1] = c1r1[l1] + 0 ̸= 0[l1]. (209)

Therefore, c1 must be zero. Suppose c2 ̸= 0, then

(

j∑
i

ciri)[l2] =

j∑
i

ci(ri[l2]) = c1r1[l2] + c2r2[l2] + · · · cjrj [l2] = 0 + c2r2[l2] + 0 ̸= 0[l2]. (210)

Repeating this, all ci, i ∈ [j] must be equal to zero and we obtain linear independence by Definition 52.

It is easier to prove the linear independence of pivot columns. By Theorem 43, since REF (A)
R≡

RREF (A), if we show linear independence of the RREF (A) pivot columns, we are done. By definition of

Gauss-Jordan elimination (Theorem 5), each pivot column at the RREF (A) is only non-zero at leading

entry and the set of pivot columns have non-zero entry at different coordinates. It is trivial to see that

no pivot column can be represented by a linear combination of the other pivot columns, so by Theorem

31, the set of pivot columns are linearly independent.

Theorem 45 (Basis for Row Space in the Row-Echelon Form). Let A be some matrix, then the non-zero

rows in REF (A) is basis for row space A.

Proof. This follows directly from row space invariance (Theorem 44) over EROs and linear independence

of pivot rows by Theorem 44.
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By Theorem 44, Theorem 43, since matrix A
R≡ REF (A), the basis for column space of A may be

obtained by taking the columns of A corresponding to the pivot columns (Definition 16) in REF (A). If

we would like to find the basis containing the originals vectors in the set provided, see that we would first

stack the column vectors horizontally and use Gaussian Elimination (Theorem 5) and pick the relevant

columns from the original matrix. If we row-stacked and took non-zero vectors from the REF, we would

obtain a basis but they might be linear transformations of the original vectors. If we are asked to extend

some linearly independent S = {si, i ∈ [k]} to basis for some Rn, n > k, we may take REF



s1

s2

· · ·
sk




and add elements of the standard basis ei ∈ Rn (Definition 56), for i corresponding to the non-pivot

columns. Choices other than ei exists; we just need to ensure that the leading entry of the new vector

corresponds to the i-th coordinate.

Theorem 46 (Representations of the Column Space). For m× n matrix A,

colSpace(A) = {Au | u ∈ Rn}. (211)

Proof. Let A = (c1 c2 · · · cn), where ci is column i of A, then ∀u ∈ Rn, see that A · u =
∑n
i uici ∈

span{c1, c2, · · · , cn}, so {Au|u ∈ Rn} ⊆ colSpace(A). On the other hand, suppose some b ∈ colSpace(A),
then ∃ui ∈ R, i ∈ [n] s.t. b =

∑n
i uici = Au. Then colSpace(A) ⊆ {Au | u ∈ Rn}. It follows that

colSpace(A) = {Au|u ∈ Rn}.

Theorem 47 (Constant Matrix is Member of the Column Space). A system of linear equations Ax = b

is consistent iff b ∈ colSpace(A).

Proof. The proof immediately follows from Theorem 46; a system of linear equations Ax = b must be

consistent iff ∃u ∈ Rn s.t. Au = b.

3.1.4.2 Ranks

Theorem 48 (Dimension Equality in Row and Column Spaces).

dim(rowSpace(A)) = dim(colSpace(A)). (212)

Proof. This follows immediately from Theorem 44 - the dim(rowSpace(A)) = number of non-zero rows

in REF of arbitrary matrix = number of pivot columns = dim(colSpace(A)).

Definition 62 (Matrix Rank). The rank of a matrix is the dimension of its row space (or column space,

Theorem 48). We denote the rank of some matrix A by rank(A).

Definition 63 (Full Rank). It is trivial to see that for m × n matrix A, rank(A) ≤ min{m,n}, If

rank(A) = min{m,n}, we say that matrix A is full rank.

A square matrix A is full rank iff it is invertible.

Theorem 49 (Rank of Matrix Transpose). Since row space A is columns space A′, rank(A) = rank(A′).

Corollary 4 (Linear System Consistency and Rank of Augmented Matrix). A linear system (Definition

5) is consistent iff rank(A) = rank((A|b)). That is, when the b is not a pivot column.
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Theorem 50 (Rank Bound of Matrix Product). Let A,B be m× n, n× p matrices respectively. Then,

rank(AB) ≤ min{rank(A), rank(B)}. (213)

Proof. Let A = (a1 a2 · · · an), B = (b1 b2 · · · bp) be their columnwise representations. Then by block

multiplication (see Exercise 11), we may write

AB = (Ab1 Ab2 · · · Abp) (214)

as the columnwise representation for their matrix product. By Theorem 46, see that ∀i ∈ [p], Abi ∈
colSpace(A) and since colSpace(AB) = span{Abi, i ∈ [p]} and each Abi may be written as a linear

combination of the columns in A, then by Theorem 28, colSpace(AB) ⊆ colSpace(A). It follows by

Theorem 38 that

rank(AB) ≤ rank(A) (215)

Equation 215 asserts that rank(B′A′) ≤ rank(B′). We may write rank(AB) = rank((AB)′) =

rank(B′A′) ≤ rank(B′) = rank(B). We have proven the equivalent statement (rank(AB) ≤ rank(A))∧
(rank(AB) ≤ rank(B)).

3.1.4.3 Nullspaces

Definition 64 (Nullspace). Let A be m × n matrix, then the solution space (Definition 30) of linear

system Ax = 0 is the nullspace of A. We refer to this subspace as nullSpace(A).

Definition 65 (Nullity). Define the nullity of m × n matrix A as nullity(A) := dim(nullSpace(A)).

See that since the solution vector ∈ Rn, then nullity(A) ≤ n.

We have already seen how to find the basis and nullity of the solution space in Exercise 33, where

the nullity was two.

Theorem 51 (Rank-Nullity Theorem / Dimension Theorem for Matrices). Let A be matrix size m×n.
Then rank(A) + nullity(A) = n.

Proof. Consider the REF form for (A|0). Reason that rank(A) corresponds to the number of pivot

columns in REF (A) and nullity(A) corresponds to the number of non-pivot columns in REF (A). See

Definition 16 and Exercise 33 for intuition.

Theorem 52 (Representations of the Solution Space). See Theorem 46 for representations of the column

space of some matrix A. Suppose Ax = b has solution v. Then the solution set of the system may be

written

M = {u+ v | u ∈ nullSpace(A)}. (216)

Proof. Suppose v is solution s.t. Av = b, then let Aw = b be some solution s.t. Aw = b. For u := w− v,
we may write

Au = A(w − v) = Aw −Ab = b− b = 0, (217)

so u ∈ nullSpace(A). It follows that u + v = w ∈ M and the solution space ⊆ M . On the other hand,

∀w ∈M , ∃u ∈ nullSpace(A) s.t. w = u+ v by assumption. See that

Aw = A(u+ v) = Au+Av = 0 + b = b, (218)

so w is solution. M ⊆ the solution space and we are done.
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Theorem 52 asserts the Ax = b has the unique solution iff nullSpace(A) is the zero space. That is

when (A|0) only has trivial solution.

Exercise 44. Let V = {(1, 1, 0, 0), (−1, 0, 1, 0)} and W = {(−1, 2, 3, 0), (2,−1, 2,−1)} and find the basis

for V +W .

Proof. We may find the basis for V +W by stacking v1, v2, w1, w2 into rows of a matrix and taking the

non-zero rows of its REF form.

Exercise 45. Let A be square matrix order 3 and describe geometrically the solution set of the HLS

Ax = 0 when rank(A) is zero, one, two and three respectively.

Proof. By rank-nullity theorem, see that nullity(A) = 3 − rank(A). So when rank(A) = 0 the

nullspace(A) = R3, when rank(A) = 1 the nullSpace(A) is plane through origin, and when rank(A) = 2

the nullSpace(A) is line through origin. Finally, when rank(A) = 3 then nullSpace(A) is the zero

space.

Theorem 53. Let B be m×n matrix. If ∃n×m matrix C s.t. BC = 1, then we say that C is the right

inverse of B. Show that m× n matrix B has right inverse iff rank(B) = m.

Proof. By definition, rank(B) = dim(colSpace(B)) ≤ m (see Definition 63). Let {ei, i ∈ [m]} be

standard basis for Rm, then B has right inverse iff B(u1 · · · um) = (e1 · · · em) for some ui, i ∈ [m] ∈
Rn iff systems Bx = ei, i ∈ [m] are consistent for all i ∈ [m] iff ei, i ∈ [m] ∈ colSpace(B) iff m ≤
dim(colSpace(B)) ≤ m iff rank(B) = m.

Exercise 46. Suppose A,B are two matrices and AB = 0, then show that colSpace(B) ⊆ nullSpace(A).

Proof. Define B = (b1 · · · bn) to be the column stacked representation for B, and see that

AB = 0 =⇒ (Ab1 · · · Abn) = 0 =⇒ ∀j ∈ [n], Abj = 0. (219)

The result follows.

Exercise 47. Prove that no matrix has row space and nullspace that contain the same nonzero vector.

Proof. We show that the only vector that is both in row space and column space must be the zero

vector. Let A =

a1· · ·
an

 be row-stacked representation for A, and let u ∈ nullSpace(A). Then see that

Au = 0 =⇒ aiu = 0 for all i. Suppose u ∈ rowSpace(A), then u =
∑n
i ciai for some constants

ci, i ∈ [n]. Then

u′u =

n∑
i

ciaiu = 0 =

n∑
i

u2i = 0↔ ∀i ∈ [n] ui = 0. (220)

Theorem 54. Let A,P be m × n matrix and m ×m matrix respectively. If P is invertible, then show

that rank(PA) = rank(A). If rank(PA) = rank(A), does this imply P is invertible?
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Proof. Since P is invertible, by Theorem 39, P is product of elementary matrices, say Πni Ei. Then

PA = Πni EiA, and P
R≡ A, and by Theorem 42, they share row space. Then

rank(PA) = dim(rowSpace(PA)) = dim(rowSpace(A)) = rank(A). (221)

The converse does not hold, consider P = A =

(
1 0

0 0

)
.

Theorem 55. Prove rank(A+B) ≤ rank(A) + rank(B).

Proof. Let A,B have column stacked representations (a1 · · · an), (b1 · · · bn) respectively, and let S1 ⊆
{ai, i ∈ [n]} be the basis for colSpace(A) and S2 ⊆ {bi, i ∈ [n]} be the basis for colSpace(B). Then

colSpace(A+B) = span{ai + bi|i ∈ [n]} ⊆ span{S1 ∪ S2}, so rank(A+B) = dim(colSpace(A+B)) ≤
rank(A) + rank(B).

Exercise 48. Let A be m× n matrix, then show that

Ax = b consistent for all b ∈ Rm =⇒ A′y = 0 has only trivial solution. (222)

Proof. By rank nullity (Theorem 51), we have

nullity(A′) = m− rank(A′) = m− rank(A) = 0, (223)

since rank(A) = m by Theorem 47.

Exercise 49. Let A be m× n matrix.

1. Show that nullSpace(A) = nullSpace(A′A).

2. Show that nullity(A) = nullity(A′A) and that rank(A) = rank(A′A).

Determine if the following are true:

3. nullity(A) = nullity(AA′).

4. rank(A) = rank(AA′).

Proof. -

1. For u ∈ nullSpace(A), see that A′(Au) = 0 and so u ∈ nullSpace(A′A). Then nullSpace(A) ⊆

nullSpace(A′A). On the other hand, for v ∈ nullSpace(A′A), and let Av =


b1

b2

· · ·
bm

, then

(Av)′(Av) = v′A′Av = v′0 = 0 =⇒
m∑
i

b2i = 0 =⇒ ∀i ∈ [m], bi = 0. (224)

Then Av = 0, v ∈ nullSpace(A) =⇒ nullSpace(A′A) ⊆ nullSpace(A).

2. First part asserts that nullity(A) = nullity(A′A). Rank nullity (Theorem 51) assers that

rank(A) = n− nullity(A) = n− nullity(A′A) = rank(A′A). (225)
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3. False, by counterexample A =

(
1 0 0

0 1 0

)
, where AA′ = 12.

4. True, since rank(A) = rank(A′) = rank((A′)′A′) = rank(AA′). We used Theorem 49.

Exercise 50. Determine which of these are true:

1. If A
R≡ B, then rowSpace(A′) = rowSpace(B′).

2. If A
R≡ B, then colSpace(A′) = colSpace(B′).

3. If A
R≡ B, then nullSpace(A′) = nullSpace(B′).

4. If A,B are matrices of same size, then rank(A+B) = rank(A) + rank(B).

5. If A,B are matrices of same size, then nullity(A+B) = nullity(A) + nullity(B).

6. If A is n×m matrix and B is m× n matrix, then rank(AB) = rank(BA).

7. If A is n×m matrix and B is m× n matrix, then nullity(AB) = nullity(BA).

Proof. -

1. False, by counterexample A =

(
1 0

0 0

)
and B =

(
0 0

1 0

)
.

2. True, since rowSpace(A) = rowSpace(B) by invariance (Theorem 42) and rowSpace(A) = colSpace(A′).

3. False by counterexample A =

(
1 0

0 0

)
, B =

(
0 0

1 0

)
.

4. False by counterexample A = B = 12. See Theorem 55 for bound relation.

5. False by counterexample A = B = 02×2.

6. False by counterexample A =

(
0 1

0 0.

)
, B =

(
0 0

0 1

)
, where AB =

(
0 1

0 0

)
, BA =

(
0 0

0 0

)
.

7. False by counterexample using the same matrices A,B defined in part 6.

3.1.5 Orthogonality

Definition 66 (⊥). For two objects a, b, a ⊥ b means a is orthogonal to b.

Definition 67 (Vector p-norm, ℓp). Define the p-norm of a vector, for real p ≥ 1 be called the ℓp norm

of a vector, written

∥x∥p :=

(
n∑
i=1

|xi|p
) 1

p

. (226)

When written without the subscripts p, let p = 2, the euclidean norm (Definition 68). The vector norm

is also said to be the length of a vector.
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Definition 68 (Euclidean Norm). The euclidean norm for x is the vector norm ∥x∥2 =
√∑

x2i .

Definition 69 (Vector Distance). For two vectors u, v ∈ Rn defined, we say that their distance is ∥u−v∥2
and denote this d(u, v).

Consider a triangle with sides with length a, b, c respectively. Let the angle between the edges of

side lengths a, b be θ. The cosine rule states that c =
√
a2 + b2 − 2ab cos θ. Now consider their vector

analogues. a→ u, b→ v, c→ (u− v) s.t.

∥u− v∥2 = ∥u∥2 + ∥v∥2 − 2∥u∥∥v∥ cos θ, (227)

so

θ = arccos

(
∥u∥2 + ∥v∥2 − ∥u− v∥2

2∥u∥∥v∥

)
. (228)

If the triangle was inscribed in a two dimensional surface with coordinates u = (u1, u2), v = (v1, v2),

then

d(u, v) =
√
(u1 − v1)2 − (u2 − v2)2, (229)

and

θ = arccos

(
u21 + u22 + v21 + v22 −

(
(u1 − v1)2 + (u2 − v2)2

)
2∥u∥∥v∥

)
(230)

= arccos

(
u1v1 + u2v2
∥u∥∥v∥

)
(231)

Definition 70 (Dot/Inner Product). For two vectors u, v,∈ Rn, the dot product of u, v is denoted

u · v :=

n∑
i

uivi. (232)

Definition 71 (Unit Vectors). A unit vector is vector v for which ∥v∥ = 1.

Definition 72 (Angle). The angle between two vectors u, v ∈ R is denoted

arccos

(
u · v
∥u∥∥v∥

)
. (233)

We denote the angle between two vectors u, v to be ∡(u, v).

From Definition 70, see that we may express the angle in the two dimensional problem (Equation

231) as arccos
(

u·v
∥u∥∥v∥

)
, which is consistent with the generalized statement in Definition 72.

Note that for column vectors u, v, the dot product u · v = u′v.

Theorem 56 (Properties of the Dot Product). For vectors u, v, w ∈ Rn, c ∈ R, the following hold:

1. u · v = v · u.

2. (u+ v) · w = u · w + v · w, w · (u+ v) = w · u+ w · v,

3. (cu) · v = u · (cv) = c(u · v),

4. ∥cu∥ = |c|∥u∥ and

5. u · u ≥ 0 and u · u = 0↔ u = 0.

Proof. The proofs for these statements should follow directly from their Definitions.

It is easy to see that u · u = ∥u∥2 for arbitrary u ∈ Rn.
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3.1.5.1 Orthogonal Basis

Definition 73 (Orthogonality). If two vectors u, v ∈ Rn satisfy u · v = 0, we say the two vectors are

orthogonal. Additionally, for a set S ⊆ Rn, ∀si, sj , si ̸= sj ∈ S, if si · sj are orthogonal vectors, then we

say that S is orthogonal set. In addition, if all the vectors in orthogonal set S is unit vector (Definition

71), then we say S is orthonormal set.

Given two vectors u, v ∈ Rn, if u is orthogonal to v, then their angle (Definition 72) is given by

arccos (0) =
π

2
, (234)

which in R2,R3 is the concept of perpendicularity.

Definition 74 (Normalization of Vectors and Sets). For arbitrary vector vi, see that ṽi =
1

∥vi∥vi has

norm one, since

∥ṽi∥ =
∥∥∥∥ 1

∥vi∥
vi

∥∥∥∥ =
1

∥vi∥
∥vi∥ = 1. (235)

This is called normalizing a vector. See that for vi, vj that is orthogonal, normalization preserves orthog-

onality, since

ṽi · ṽj =
(

1

∥vi∥
vi

)
·
(

1

∥vj∥
vj

)
=

1

∥vi∥∥vj∥
(vi · vj) = 0. (236)

The process of converting an orthogonal set to orthonormal set by dividing each element by its norm is

called normalizing a set.

See that standard basis ei’s (Definition 56) is orthonormal.

Theorem 57 (Orthogonal Set S is LIND). If S is orthogonal set (Definition 73) of nonzero vectors in

vector space, then LIND(S).

Proof. Let S = {ui, i ∈ [k]}. Consider HLS
∑k
i ciui = 0. Since S is orthogonal, we may write (

∑k
i ciui) ·

ui = ci(ui · ui). Then since

∀i ∈ [k], ci(ui · ui) = (
∑

ciui) · ui = 0 · ui = 0 (237)

but ui ̸= 0, ci must be zero and the HLS must have only the trivial solution. S is linearly independent

by Definition 52.

Corollary 5. By equivalent statements for basis (Theorem 37) and linear independence of orthogonal

sets, to see if some set S in vector space dim k is orthogonal basis, we only need to check orthogonality

of S and |S| = k.

Theorem 58. If S = {ui, i ∈ [k]} be orthogonal basis for vector space V , then ∀w ∈ V , we may express

w =
w · u1
u1 · u1

u1 + · · ·+
w · uk
uk · uk

uk. (238)

That is (w)S =
(
w·u1

u1·u1
, · · · , w·uk

uk·uk

)
. In particular, if S is orthonormal basis, them (w)S = (w ·u1, · · · , w ·

uk).

Proof. Let w =
∑k
i ciui, then for i ∈ [k], see that

w · ui = (
∑

ci · ui) · ui = ci(ui · ui), (239)

and therefore ci =
w·ui

ui·ui
. The last assertion follows from observing ui ·ui = ∥ui∥2 = 1 for all i ∈ [k] under

orthonormality.
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Definition 75 (Orthogonality to Vector Space). Let V be subspace of Rn, then we say that u ∈ Rn is

orthogonal to V if ∀v ∈ V, u is orthogonal to v.

Definition 76 (Normal Vector). Let V be some subspace Rn. If ∀u ∈ V , ∃n s.t. n · u = 0, then n is

orthogonal to V (Definition 75) and we call n a normal vector of V .

For instance, if V is plane in Rn and V is s.t.

V = {(x, y, z) ∈ R3 | ax+ by + cz = 0}, (240)

where normal vector n = (a, b, c), then V = {u ∈ R3|n · u = 0}.
Given a vector space V spanned by S = {ui, i ∈ [k]}, to find all vectors orthogonal to V , we shall

solve for the linear systems v ·ui = 0, i ∈ [k] for arbitrary vector v ∈ V . That is, solve for the HLS where

the vectors in S are row stacked, which is


u1

u2

· · ·
uk

V =


u1V

u2V

· · ·
ukV

 = 0 (see Exercise 11). Formally:

Theorem 59. For V = span{ui, i ∈ [k]} subspace of Rn, vector v ∈ Rn is orthogonal to V iff v · ui = 0

for all i ∈ [k].

Definition 77 (Orthogonal Projection). Let V be subspace Rn, then every vector u ∈ Rn may be written

uniquely as form

u = p+ n, (241)

where n is orthogonal to V and p ∈ V . We call p the projection of u onto V .

Theorem 60 (Projections with Basis). Let V be subspace of Rn, w be vector in Rn, then if S = {ui, i ∈
[k]} is orthogonal basis for V , we have

p :=

k∑
i

w · ui
ui · ui

ui, (242)

where p is projection of w onto V (Definition 77). Additionally, if S is orthonormal basis, then

p =

k∑
i

(w · ui)ui. (243)

Proof. Define p :=
∑k
i
w·ui

ui·ui
ui and n := w − p, then ∀i ∈ [k], see that

n · ui = w · ui − p · ui (244)

= w · ui −
k∑
j

w · uj
uj · uj

(uj · ui) (245)

= w · ui −
w · ui
ui · ui

(ui · ui) (246)

= 0. (247)

The last assertion follows from ui · ui = 1 for all i ∈ [k] under orthonormality.

See that Theorem 58 is consistent with Theorem 60 by w → p, n→ 0.
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Theorem 61 (Gram-Schmidt Process). Let S = {ui, i ∈ [k]} be basis for vector space V , let

∀i ∈ [k], vi := ui −
i−1∑
j=1

ui · vj
vj · vj

vj . (248)

Then {vi, i ∈ [k]} is orthogonal basis for V . Divide each element vi by ∥vi∥ in orthogonal basis to get

orthonormal basis (see Definition 74).

Proof. First, see from the algorithm that each of the vi’s are linear combinations of the ui’s, which span

V with dimension k. By span closure, each of the vi’s ∈ V . Additionally, there a total of k such vi’s, so

by Corollary 5, we only need to show orthogonality of the vi’s. When we have {v1}, this set is vacuously
an orthogonal set. Suppose sets of size l, S = {vt, t ∈ [l]}, l < i are orthogonal. Then consider for l < i,

vi · vl =

ui − i−1∑
j=1

ui · vj
vj · vj

vj

 vl (249)

= ui · vl −
vi · vl
vl · vl

vl · vl (250)

= 0. (251)

So vi is orthogonal to elements of the set vi−1, which by inductive assumption is orthogonal. That is the

addition of vi keeps orthogonality invariant. Then by induction {vi, i ∈ [k]} are orthogonal and we are

done.

Exercise 51 (Gram-Schmidt Process Run). Apply Gram-Schmidt (Theorem 61) to transform {u1, u2, u3}
for R3 into orthogonal basis, where u1 = (1,−1, 2), u2 = (2, 1, 0), u3 = (0, 0, 1).

Proof. Work through these iteratively:

v1 = u1, (252)

v2 = u2 −
u2 · v1
v1 · v1

v1, (253)

v3 = u3 −
u3 · v1
v1 · v1

v1 −
u3 · v2
v2 · v2

v2 (254)

to obtain the orthogonal vectors.

3.1.5.2 Best Approximations

Theorem 62 (Best Approximation Theorem). Let V be subspace of Rn. If u ∈ Rn and p is projection

of u onto V (Definition 77), then

∀v ∈ V, d(u, p) ≤ d(u, v). (255)

That is p is the best approximation for vector u that is in vector space V .

Proof. For arbitrary v ∈ V , let

n := u− p, w := p− v, x := u− v. (256)

Then see x = n+ w and n · w = 0. So

∥x∥2 = x · x = (n+ w) · (n+ w) = n · n+ w · w = ∥n∥2 + ∥w∥2. (257)
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Therefore ∥x∥2 ≥ ∥n∥2 and

d(u, p) = ∥u− p∥ = ∥n∥ ≤ ∥x∥ = ∥u− v∥ = d(u, v). (258)

To find the shortest distance of some vector u to a vector space V , find the projection p of u onto V

and compute d(u, p).

Exercise 52 (Least-Squares Method). Suppose the random variables for r, s, t are related

t = cr + ds+ e, (259)

for constants c, d, e. Suppose we have observations for (r, s, t)i, i ∈ [6], and we would like to estimate the

(beta) coefficients for c, d, e so we have a better understanding the relationships between the random

variables. Defining A =


r1 s1 1

r2 s2 1

· · · · · · · · ·
r6 s6 1

 , x =

cd
e

 , b =


t1

t2

· · ·
t6

, we would like to solve for

Ax = b. However, it turns out that due to the presence of random errors, Ax = b is almost always

inconsistent. Instead, we would like to find the best fit estimates (ĉ, d̂, ê) for (c, d, e). The least squares

method minimizes the sum of squared errors proposed by the model; it solves for the x that minimizes

∥b − Ax∥2. This statement is equivalent to the form in Equation 1025 in our discussion on multiple

least-squares method. For m× n matrix A, the least-squares solution is the vector u ∈ Rn that satisfies

∀v ∈ Rn, ∥b−Au∥ ≤ ∥b−Av∥. (260)

See Theorem 46 that we may express colSpace(A) = {Av|v ∈ Rn}. It turns out that the least squares
solution b is the best approximation of b onto colSpace(A).

Theorem 63. Let Ax = b be linear system for m×n matrix, and p be projection of b onto colSpace(A).

Then

∀v ∈ Rn, ∥b− p∥ ≤ ∥b−Av∥. (261)

That is u is least-square solution to Ax = b iff Au = p.

Proof. By Best Approximation Theorem 62, see that

∀w ∈ colSpace(A), ∥b− p∥ = d(b, p) ≤ d(b, w) = ∥b− w∥, (262)

and since colSpace(A) = {Av|v ∈ Rn}, the result follows.

In Equation 1030, we obtained the least-squares solution via matrix calculus. Here we derive the

same solution using the linear algebraic theorems.

Theorem 64 (Obtaining the Least Squares Solution). Let Ax = b be linear system. Then u is least

squares solution iff u solves A′Ax = A′b.

Proof. Let A =
(
a1 a2 · · · an

)
where ai is column i. Let V = colSpace(A), then u is least squares

solution to Ax = b iff Au is projection of b onto V iff (b−Au) is orthogonal to V iff (b−Au) is orthogonal
to vectors in the span of V , that is {ai, i ∈ [n]}. This is linear system

∀i ∈ [n], ai · (b−Au) = 0 (263)
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which is A′(b − Au) = 0 by block matrix representations and therefore A′Au = A′b. We used the best

approximation Theorem 62, definitions for vector space orthogonality (Definition 75), column space

representations (Theorem 46) and block matrix operations (Exercise 11).

That is, we do not need to explicitly solve for projection p - we may instead solve for the linear

system (A′A)x = A′b. In the form for Equation 1030, we have assumed that the matrix A is full rank,

st. A′A is invertible (verify this) and a unique least squares solution exists. Here, we have shown a more

generalized problem without assuming a unique least squares solution. If the linear system A′Ax = A′b

has infinitely many solutions, pick some vector u from the solution space and compute Au := p as the

projection of b onto V .

3.1.5.3 Orthogonal Matrices

Recall that for S = {ui, i ∈ [k]}, T = {vi, i ∈ [k]} bases for vector space V , the transition matrix P from

S → T (Definition 59) is written

P =
(
[u1]T [u2]T · · · [uk]T

)
(264)

and [w]T = P [w]S is satisfied for w ∈ V .

Definition 78 (Orthogonal Matrix). A square matrix (Definition 22) is orthogonal if A−1 = A′.

Theorem 65. A square matrix A is orthogonal iff AA′ = 1.

Proof. Proof follows directly from Theorem 13.

Theorem 66 (Equivalent Statements for Matrix Orthogonality). Let A be square matrix order n, then

the following statements are equivalent:

1. A is orthogonal,

2. Rows of A form orthonormal basis for Rn.

3. Columns of A form orthonormal basis for Rn.

Proof. Let A =


a1

a2

· · ·
an

 be the row-stacked representation of A. the By Corollary 5, 1↔ 2 can be proved

if we show that A orthogonal iff {ai, i ∈ [n]} is orthonormal. See that

AA′ = (aia
′
j)n×n = (ai · aj)n×n, (265)

so A orthogonal iff AA′ = 1 iff ∀i, j, ai · aj = δij is the Dirac delta function δij = 1{i = j}. The last

statement iff a1, · · · an is orthonormal. Proof for 1↔ 3 is similar.

Theorem 67. Let S, T be two orthonormal bases for vector space, P be transition matrix S → T . Then,

P is orthogonal and PP ′ = 1. P ′ is transition matrix from T → S.

Proof. Let S = {ui, i ∈ [k]}, T = {vi, i ∈ [k]} be two orthonormal bases given. Then by orthonormality

we may express (Theorem 58)

∀i ∈ [k], ui =

k∑
i

(ui · vi)vi. (266)
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Then transition matrix P from S → T is expressed
u1 · v1 u2 · v1 · · · uk · v1
u1 · v2 u2 · v2 · · · uk · v2
· · · · · · · · · · · ·

u1 · vk u2 · vk · · · uk · vk

 . (267)

We may repeat the same exercise and verify that the transition matrix Q from T → S is s.t. Q′ = P .

The final assertion follows from Theorem 40.

Exercise 53 (Rotation of Coordinates). Let E = {e1, e2} be standard basis (Definition 56) for R2. We

may obtain a rotation in the coordinate system by angle θ. See that if we let

(u1)E = (cos(θ), sin(θ)), (268)

(u2)E = (− sin(θ), cos(θ)), (269)

then S = {u1, u2} is orthonormal basis for R2 and the transition matrix from S → E is

P =

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
. (270)

For arbitrary v = (x, y) ∈ R2, (v)S = (x′, y′) is obtained via the relation(
x′

y′

)
= P ′

(
x

y

)
(271)

s.t.

x′ = x cos(θ) + y sin(θ) (272)

y′ = −x sin(θ) + y cos(θ), (273)

which is the rotation by θ to a new coordinate system.

Theorem 68 (Cauchy-Schwarz Inequality). For vectors u, v ∈ Rn, prove

|u · v| ≤ ∥u∥∥v∥. (274)

Proof. If u = 0, then |0 · v∥ ≤ ∥0∥∥v∥. Else, if u ̸= 0, then denote

a = u · u, b = 2u · v, c = v · v, (275)

and ∀t ∈ R, see that

0 ≤ (tu+ v)(tu+ v) = t2(u · u) + 2tu · v + v · v = at2 + bt+ c. (276)

Since this is strictly greater than zero, the discriminant b2 − 4ac ≤ 0, so

4(u · v)2 ≤ 4(u · u)(v · v) =⇒ (u · v)2 ≤ (u · u)(v · v) =⇒ |(u · v)| ≤
√
u · u
√
v · v = ∥u∥∥v∥. (277)

Theorem 69 (Triangle Inequality). For vectors u, v ∈ Rn, prove

∥u+ v∥ ≤ ∥u∥+ ∥v∥. (278)
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Proof. We can write

∥u+ v∥2 = (u+ v) · (u+ v) (279)

= u · u+ v · v + 2u · v (280)

≤ ∥u∥2 + ∥v∥2 + 2∥u∥∥v∥ Theorem 68 (281)

= (∥u∥+ ∥v∥)2. (282)

The result follows.

Exercise 54. Prove that for u, v, w ∈ Rn,

1.

d(u,w) ≤ d(u, v) + d(v, w). (283)

2.

∥u+ v∥2 + ∥u− v∥2 = 2∥u∥2 + 2∥v∥2. (284)

3.

u · v =
1

4
∥u+ v∥2 − 1

4
∥u− v∥2. (285)

Proof. -

1. Use the Triangle Inequality (Theorem 69 with u→ u− v, v → v − w and so

∥u− w∥ ≤ ∥u− v∥+ ∥v − w∥ ↔ d(u,w) ≤ d(u, v) + d(v, w). (286)

2. See that

∥u+ v∥2 + ∥u− v∥2 = (u+ v) · (u+ v) + (u− v) · (u− v) (287)

= 2(u · u) + 2(v · v) + 2u · v − 2u · v (288)

= 2∥u∥2 + 2∥v∥2. (289)

This part shows that for a parallelogram with u, v as sides, then taking the sum of squares of the

four sides is the sum of squares of the diagonals.

3. See that

1

4
(u+ v) · (u+ v)− 1

4
(u− v) · (u− v) = 1

4
(2u · v + 2u · v) = u · v. (290)

Exercise 55 (Orthogonal Space is Subspace). Let W be subspace of Rn, and define

W⊥ = {u ∈ Rn | u orthogonal to W }. (291)

Show W⊥ is subspace of Rn.
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Proof. Let {wi, i ∈ [k]} be a basis for W , then see that

u ∈W⊥ ↔ ∀i ∈ [k], wi · u = 0↔

w1

· · ·
wk

u = 0. (292)

Therefore W⊥ is a nullspace.

Exercise 56. Let {u1, · · · , un} be set of orthogonal vectors, then show∥∥∥∥∥
n∑
i

ui

∥∥∥∥∥
2

=

n∑
i

∥ui∥2. (293)

Proof. Write ∥∥∥∥∥
n∑
i

ui

∥∥∥∥∥
2

= (

n∑
i

ui) · (
n∑
j

uj) =

n∑
i

(ui · ui) =
n∑
i

∥ui∥2. (294)

Exercise 57 (QR Factorization Example). Let A =


1 1 0

1 1 0

1 1 1

0 1 1

 and

u1 =


1

1

1

0

 , u2 =


1

1

1

1

 , u3 =


0

0

1

1

 . (295)

Use Gram-Schmidt process to transform {u1, u2, u3} into orthonormal basis {w1, w2, w3} for colSpace(A).
Then write each of the ui’s as linear combination of wi’s. Then write A = QR, where Q is 4× 3 matrix

where the columns are orthonormal, and R is 3 × 3 upper triangular with positive entries along the

diagonal.

Proof. Apply Gram-Schmidt (Theorem 61) to obtain orthonormal basis

w1 =
1√
3


1

1

1

0

 , w2 =


0

0

0

1

 , w3 =
1√
6


−1
−1
2

0

 . (296)

See that

u1 =
√
3w1, u2 =

√
3w1 + w2, u3 =

1√
3
w1 + w2 +

√
2

3
w3. (297)

Then let the matrices

A = (u1 u2 u3) = (w1 w2 w3)


√
3
√
3 1√

3

0 1 1

0 0
√

2
3

 , (298)

Q = (w1 w2 w3) =


1√
3

0 − 1√
6

1√
3

0 − 1√
6

1√
3

0 2√
6

0 1 0

 , R =


√
3
√
3 1√

3

0 1 1

0 0
√

2
3

 (299)
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satisfy A = QR.

Theorem 70 (Unique Projection). Let V be subspace of Rn, and u ∈ Rn. Show that u = n+ p, where

n is orthogonal to V and p is projection of u onto V is unique.

Proof. Let u = n1 + p1 = n2 + p2. We show that the two representations must be the same. Since for

i = 1, 2 we have ni · pj = 0, and n1 + p1 = n2 + p2 =⇒ n1 − n2 = p2 − p1, then

∥n1 − n2∥2 = (n1 − n2) · (n1 − n2) = (n1 − n2) · (p2 − p1) = n1 · p2 − n1 · p1 − n2 · p2 + n2 · p1 = 0.(300)

Therefore, n1 − n2 = 0 and so n1 = n2. We also have p2 − p1 = n1 − n2 = 0, so p1 = p2.

Exercise 58. Let A be square matrix order n, and A2 = A, A′ = A. Then

1. Show that ∀u, v ∈ Rn, (Au) · v = u · (Av).

2. Show that ∀w ∈ Rn, Aw is projection of w onto subspace V = {u ∈ Rn|Au = u} of Rn.

Proof. -

1. (Au) · v = (Au)′v = u′A′v = u′Av = u · (Av).

2. Since A(Aw) = A2w = Aw ∈ V , then for v := w−Aw, see that for all u ∈ V (applying part 1 and

using the property Au = u of elements in subspace V ),

u · v = u · w − u ·Aw = u · w −Au · w = u · w − u · w = 0. (301)

Since w = Aw + v, Aw ∈ V and v ⊥ V , Aw is projection w onto V .

Exercise 59. Discuss which of these are true:

1. ∥u∥ = ∥v∥ =⇒ ∥u+ w∥ = ∥v + w∥.

2. ∥u∥ = ∥v∥ and w orthogonal to u, v =⇒ ∥u+ w∥ = ∥v + w∥.

3. u orthogonal to v, w =⇒ u orthogonal to v + w.

4. u, v orthogonal and v, w orthogonal =⇒ u,w orthogonal.

Proof. -

1. False, see counterexample u, v, w = (1, 0), (0, 1), (2, 0) respectively.

2. True, since ∥u+ w| =
√
∥u∥2 + |w∥2, ∥v + w∥ =

√
∥v∥2 + ∥w∥2.

3. True, u · (v + w) = u · v + u · w = 0.

4. False, see counterexample u, v, w = (1, 0), (0, 1), (2, 0) respectively.

Exercise 60. Suppose a linear system Ax = b is consistent, then show that the solution space of Ax = b

is the solution space of A′Ax = A′b.
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Proof. If Av = b, then since A′Av = A′Av = A′b, v is solution for A′Ax = A′b. Then the solution for

space for Ax = b is written (Theorem 52, Exercise 49 part 1)

{u+ v|u ∈ nullSpace(A)} = {u+ v|u ∈ nullSpace(A′A)}, (302)

which is the solution space for A′Ax = A′b.

Exercise 61. Let A be orthogonal matrix order n and u, v ∈ Rn. Show that

1. ∥u∥ = ∥Au∥.

2. d(u, v) = d(Au,Av).

3. ∡(u, v) = ∡(Au,Av).

Proof. -

1. ∥Au∥2 = (Au)′(Au) = u′A′Au = u′u = ∥u∥2.

2. d(Au,Av) = ∥Au−Av∥ = ∥A(u− v)∥ = ∥u− v∥ = d(u, v) by part 1.

3. (Au) · (Av) = u′A′Av = u′v = u · v =⇒ ∡(u, v) = arccos
(

u·v
∥u∥∥v∥

)
= arccos

(
(Au)·(Av)
∥Au∥∥Av∥

)
=

∡(Au,Av) by part 1.

Exercise 62. Let A be orthogonal matrix order n and S = {ui, i ∈ [n]} be basis for Rn.

1. Show that T = {Aui, i ∈ [n]} is basis for Rn.

2. Show that S orthogonal =⇒ T orthogonal.

3. Show that S orthonormal =⇒ T orthonormal. (Orthogonal (unitary) matrices preserve vector

norms).

Proof. -

1. Since A−1 = A′ then T is linearly independent by Exercise 39. So T is basis by Theorem 37.

2. Follows immediately from Exercise 61, since (Au) · (Av) = u · v.

3. Part 3 asserts that T is minimally orthogonal set. Then to show orthonormality, see Exercise 61,

part 1. That is, vector norms are preserved under transformations from orthogonal (more generally,

unitary) matrices.

Exercise 63. Determine which of these are true:

1. If A = (c1 · · · ck) is n× k matrix and ci, i ∈ [k] orthonormal then A′A = 1k.

2. If A = (c1 · · · ck) is n× k matrix and ci, i ∈ [k] orthonormal then AA′ = 1n.

3. If A,B orthogonal matrices, then A+B is orthogonal.

4. If A,B orthogonal matrices, then AB is orthogonal.
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Proof. -

1. True, since A′A =

 c′1

· · ·
c′k

(c1 · · · ck

)
= (ci · cj)k×k = 1k.

2. False by counterexample A =

1 0

0 1

0 0

. Also, recall that A has right inverse iff rank(A) = n but

here rank(A) = 2 < 3 (Theorem 53).

3. False by counterexample A = 12, B = −12.

4. True, since (AB)′(AB) = B′A′AB = 1.

3.1.6 Diagonalization

All vectors here are expressed column unless otherwise stated.

3.1.6.1 Eigenvalues

Definition 79 (Eigenvalues and Eigenvectors). Let A be square matrix order n, then nonzero u ∈ Rn

is eigenvector of A if Au = λu for some constant λ. λ is said to be eigenvalue of A, and u is said to be

eigenvector of A associated with eigenvalue λ.

Definition 80 (Characteristic Polynomials). Let A be square matrix order n. Then the equation

det(λ1−A) = 0 (303)

is said to be a characteristic equation of A with characteristic polynomial det(λ1−A).

Theorem 71 (Eigenvalue solves the characteristic polynomial). Let A be square matrix order n, then λ

is eigenvalue of A iff det(λ1−A) = 0.

Proof. λ is eigenvalue of A iff Au = λu for some nonzero u ∈ Rn iff λu − Au = 0 iff (λ1 − A)u = 0

iff (λ1 − A)x = 0 has non-trivial solutions iff det(λ1 − A) = 0, by Theorem 39. When expanded

det(λ1−A) = 0 turns out to be polynomial in λ of degree n. (verify this)

Exercise 64. For matrix C =

0 −1 0

0 0 2

1 1 1

, the characteristic polynomial is

det(λ1− C) =

∣∣∣∣∣∣∣
λ 1 0

0 λ −2
−1 −1 λ− 1

∣∣∣∣∣∣∣ = λ3 − λ2 − 2λ+ 2 = (λ− 1)(λ2 − 2), (304)

so det(λ1− C) = 0 iff λ ∈ {1,
√
2,−
√
2} which are the eigenvalues of C.

Theorem 72 (Invertibility of Square Matrices, 3). If A is square matrix order n, then the following

statements are equivalent:
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1. A is invertible.

2. Ax = 0 has only the trivial solution.

3. RREF of A is identity 1 matrix.

4. A can be expressed as Πni Ei, where Ei are elementary matrices.

5. det(A) ̸= 0.

6. Rows of A form basis for Rn.

7. Columns of A form basis for Rn.

8. rank(A) = n.

9. 0 is not eigenvalue of A.

Proof. See proof in Theorem 39 for the iff conditions for statement 1↔ 7. Statement 6, 7↔ 8 is trivial

by definition of rank (Definition 62). We just need to show any of statements 1 ∼ 8 iff statement 9.

By Theorem 71, λ is eigenvalue of A iff det(λ1 − A) = 0, so 0 is not eigenvalue of A iff det(0 − A) =

det(−A) = (−1)ndet(A) ̸= 0 (last step follows from Theorem 22), which is iff det(A) ̸= 0. Then we are

done.

Theorem 73. If A is triangular matrix (Definition 28), then the eigenvalues of A are diagonal entries

of A.

Proof. Suppose A = (aij) order n is triangular, then consider λ1 − A. This is triangular matrix with

diagonals λ− aii, i ∈ [n], so by Theorem 16, see that

det(λ1−A) = Πni (λ− aii). (305)

It follows that the diagonal entries aii are the eigenvalues of A.

Definition 81 (Eigenspace). Let A be square matrix order n and λ be eigenvalue, then solution space of

(λ1−A)x = 0 is called the eigenspace of A associated with eigenvalue λ, and we denote this Eλ. See that

this is a nullspace. If nonzero u ∈ Eλ, then u must be an eigenvector of A associated with λ; Au = λu.

We know how to obtain the eigenvalues of a matrix A. See Exercise 64 on solving characteristic

polynomials. Once we obtain some set of eigenvalues, then each eigenvalue has an associated eigenspace,

which can be obtained by solving some HLS. We know how to obtain the spanning basis (Definition 54)

for nullspaces (Definition 64). See Exercise 33 for a walk-through.

3.1.6.2 Diagonalization

Definition 82 (Diagonalizable Matrix). Let A be square matrix order n, then we say that it is diagonal-

izable if ∃P that is invertible s.t. P−1AP = D and D is diagonal matrix. Then P is said to diagonalize

matrix A.

Theorem 74. Let A is square matrix order n, then A is diagonalizable iff A has n linearly independent

eigenvectors.
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Proof. →: Suppose A is diagonalizable, then let P be invertible matrix satisfying P−1AP = D where

Dii =

{
λi if i = j ,

0 if i ̸= j .
(306)

For P = (u1 u2 · · ·un), since AP = PD, then

A(u1 u2 · · · un) = (u1 u2 · · · un)D =⇒ (Au1 Au2 · · · Aun) = (λ1u1 λ2u2 · · · λnun) (307)

so that Aui = λi for all i. That is, u1, · · ·un are eigenvectors of A, and since P is invertible, by

equivalent statements (Theorem 72), it follows that {ui, i ∈ [n]} is Rn basis; they are linearly independent.

←: Suppose A has n linearly independent eigenvectors ui, i ∈ [n]. Let these be associated with the

eigenvectors λi, i ∈ [n], then by equivalent statements for basis (Theorem 37), it follows that {ui, i ∈ [n]}
is basis for Rn. Then define P = (u1 u2 · · · un), and see that

AP = (Au1 Au2 · · · Aun) = (λ1u1 λ2u2 · · · λnun) = PD, (308)

where

Dii =

{
λi if i = j ,

0 if i ̸= j .
. (309)

By the equivalence relations asserted by Theorem 72, P is invertible and P−1AP = D.

Exercise 65. Given a square matrix A order n, discuss how one may determine if A is diagonalizable,

and if it is so, outline how to find invertible P s.t. P−1AP = D for some diagonal matrix D.

Proof. 1. First, find all distinct eigenvalues λi, i ∈ [k] by solving for the characteristic equation

det(λ1−A) = 0.

2. For each i ∈ [k], find basis Sλi
for eigenspace Eλi

by solving the associated HLS.

3. Let S = ∪ki Sλi
, if |S| < n, then A is not diagonalizable, and otherwise it is diagonalizable. Suppose

S = {u1, · · · , un}, then the matrix P = (u1 u2 · · · un) is invertible matrix diagonalizing A.

The case when matrix A has non-real eigenvalues when solving for the characteristic polynomial are

discussed in the section on abstract linear algebra techniques over complex fields.

Result 4. Suppose the characteristic polynomial of matrix A is factorized to det(λ1−A) = Πki (λ−λi)ri ,
then for each eigenvalue λi, dim(Eλi

) ≤ ri. Furthermore, A is diagonalizable iff in step 2 outlined in

algorithm for Exercise 65, we obtain ∀i ∈ [k], dim(Eλi
) = ri.

Exercise 66. -

1. Let C =

0 −1 0

0 0 2

1 1 1

. Solving the characteristic polynomial (see Exercise 64), the eigenvalues

are 1,
√
2,−
√
2. Solving the linear system for λ = 1, (λ1− C)x = 0, 1 1 0

0 1 −2
−1 −1 1− 1


xy
z

 =

0

0

0

 , (310)
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get general solution

xy
z

 = t

−22
1

. Then E1 = span


−22

1


. We may repeat the same

exercise to get

E√
2 = span


−1√2

1


 , E−

√
2 = span


 −1−√2

1


 . (311)

Then let P =

−2 −1 −1
2
√
2 −

√
2

1 1 1

 and P−1CP =

1 0 0

0
√
2 0

0 0 −
√
2

.

2. Let A =

 1 0 0

1 2 0

−3 5 2

. Then either by solving the characteristic polynomial or observing that this is

triangular (Theorem 73), the eigenvalues are 1, 2. Solving the linear systems, λ = 1, (λ1−A)x = 0

with general solution

xy
z

 = t

 1

−1
8

 , see that E1 = span


 1

−1
8


. Next, solving the linear

system λ = 2, (λ1− A)x = 0 with general solutions

xy
z

 = t

0

0

1

 , see that E2 = span


0

0

1


.

We only have two linearly independent eigenvectors, therefore A is not diagonalizable by Theorem

74.

Exercise 67. Let A be square matrix order n, then suppose we have m < n linearly independent eigenvec-

tors ui, i ∈ [m], where Aui = λiui, and λi’s are not necessarily distinct. For new eigenvalue µ ̸= λi∈[m],

and linearly independent vectors {vj , j ∈ [p]} ⊆ Eµ, prove {ui, i ∈ [m]} ∪ {vj , j ∈ [p]} is linearly inde-

pendent.

Proof. Consider
∑m
i aiui +

∑p
j bivj = 0, then multiply A to both sides to get

m∑
i

aiλiui +

p∑
j

bjµvj = 0, (312)

and subtract the two equations
∑m
i aiλiui +

∑p
j biµvj = 0 and µ ·

(∑m
i aiui +

∑p
j bivj = 0

)
to get

m∑
i

ai(λi − µ)ui = 0, (313)

which implies ai(λi − µ) = 0 by independence of ui’s, But λi ̸= µ, so each of the ai’s = 0. Substitute

this into the vector equations to get
∑p
j bjvj = 0, which by the linear independence of vj ’s, imply each

of bj ’s = 0.

Exercise 68. Prove that eigenvectors belonging to distinct eigenspaces are linearly independent.

Proof. Let Tv1 = λ1v1, T v2 = λ2v2 and λ1 ̸= λ2. Then consider α1v1 + α2v2 = 0, then

0 = T (0) = T (α1v1 + α2v2) = α1λ1v1 + α2λ2v2 (314)
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by linear transformation properties (Theorem 76), and see that λ10 = λ1α1v1 + λ1α2v2. Since

0 = α1λ1v1 + α2λ2v2 = α1λ1v1 + α2λ1v2, (315)

0 = 0v1 + α2(λ2 − λ1)v2 see that α2 = 0 since λ1 ̸= λ2 by assumption and v2 ̸= 0 by definition of

eigenvectors (Definition 79). Then 0 = α1v1 +0v2 =⇒ α1 = 0 since v1 ̸= 0 by definition of eigenvector,

and α1 = α2 = 0. For two eigenvectors, consider them already independent and belonging to the same

eigenspace, or if they belong to distinct eigenspaces, we have shown they must be linearly independent.

Then the induction proof is shown in Exercise 67 and the result generalizes to any set of eigenvectors

each from distinct eigenspaces.

Corollary 6. Let A be square matrix order n. If A has n distinct eigenvalues, then A is diagonalizable.

Proof. This is trivial to see, since for each eigenvalue, there is at least one eigenvector associated with it.

We have n eigenvectors. The eigenvectors are linearly independent by Exercise 68, hence by Theorem

74, A is diagonalizable.

See that for diagonalizable matrix A of square matrix order n and invertible P satisfying

P−1AP = D, (316)

where D is diagonal matrix with diagonal entry λi at Dii, i ∈ [n], we have

1. for m ∈ Z+, Am = PDmP−1, where Dm is diagonal matrix with diagonal entry λmi at (i, i) entry,

2. and if we are further given that A−1 exists, then λi ̸= 0 for all i by Theorem 72 and λ−1
i is valid

for all i ∈ [n]. In fact

A−1 = PD̃P−1 (317)

where D̃ is diagonal matrix with (i, i) entry λ−1
i . We may also obtain A−m as we did in part 1 by

making the substitution A−1 → A, D̃ → D.

Exercise 69. Find a closed form solution for the Fibonacci sequence.

Proof. The Fib-sequence may be written as (a0, a1, · · · ) s.t. a0 = 0, a1 = 1 and an = an−1 + an−2 for all

n ≥ 2. Then see that we may write

an = an (318)

an+1 = an−1 + an, (319)

with matrix representation (
an

an+1

)
=

(
0 1

1 1

)(
an−1

an

)
. (320)

Define xn =

(
an

an+1

)
, A =

(
0 1

1 1

)
, s.t. xn = Axn−1 = A2xn−2 = · · ·Anx0. Then obtain an invertible

P as in Exercise 65, and get P =

(
1 1

1+
√
5

2
1−

√
5

2

)
. Compute P−1AP = D =

(
1+

√
5

2 0

0 1−
√
5

2

)
. Then
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we may write(
an

an+1

)
= xn = Anx0 (321)

=

(
1 1

1+
√
5

2
1−

√
5

2

)( 1+
√
5

2

)n
0

0
(

1−
√
5

2

)n
( 1 1

1+
√
5

2
1−

√
5

2

)−1(
0

1

)
(322)

=

 1√
5

(
1+

√
5

2

)n
− 1√

5

(
1−

√
5

2

)n
1√
5

(
1+

√
5

2

)n+1

− 1√
5

(
1−

√
5

2

)n+1

 . (323)

We have found the n-th Fibonacci sequence number, an.

3.1.6.3 Orthogonal Diagonalization

If we have obtained linearly independent eigenvectors (see Exercise 65), we may obtain an orthonor-

mal basis for the span of these eigenvectors (recall we may use Gram-Schmidt procedure to obtain an

orthonormal set from a basis (Definition 61)).

Definition 83 (Orthogonally diagonalizable). Square matrix A is orthogonally diagonalizable if there

exists orthogonal matrix P s.t P ′AP = D, where D is some diagonal matrix. P is said to orthogonally

diagonalize A.

Theorem 75. Square matrix A order n is orthogonally diagonalizable iff A′ = A (it is symmetric).

Proof. We only prove →. Suppose A is orthogonally diagonalizable, then for some P , P ′AP = D and

P ′ = P−1 with D being diagonal matrix. We may write

A = (P ′)−1DP−1 = PDP ′. (324)

Since D′ = D, we have

A′ = (PDP ′)′ = P ′′D′P ′ = PDP ′ = A. (325)

Verify this theorem for ←.

Exercise 70. Given symmetric matrix A order n, discuss how to find an orthogonal matrix P s.t

P ′AP = D for some diagonal matrix D.

Proof. -

1. First, find all the distinct eigenvalues, λi, i ∈ [k]

2. For each λi, find basis Sλi
spanning Eλi

and use Gram-Schmidt process to obtain orthonormal

basis Tλi
.

3. Let T = ∪ki Tλi
:= {v1, · · · vn}. Then P = (v1 v2 · · · vn) is orthogonal matrix that diagonalizes A.

When the matrix is symmetric, it turns out that the eigenvalues are always real (verify this). By

Result 4, let the characteristic polynomial be expressed

det(λ1−A) = Πki (λ− λi)ri , (326)

then dim(Eλi
) = ri and |Sλi

| = |Tλi
| = ri.
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3.1.6.4 Quadratic Forms and Conic Sections

Definition 84 (Quadratic Form). The general form

Q(x1, · · · , xn) =
n∑
i=1

n∑
j=i

qijxixj , (327)

where qij ∈ R is said to be a quadratic form in n variables xi, i ∈ [n]. If we define symmetric matrix

A = (aij) where aij =


qii i = j,

1

2
qij i < j,

1

2
qji i > j,

(328)

then see that we may express

Q((xi)i∈[n]) = (x1 x2 · · · xn)


q11

1
2q12 · · · 1

2q1n
1
2q12 q22 · · · 1

2q2n

· · · · · · · · · · · ·
1
2q1n

1
2q2n · · · qnn



x1

x2

· · ·
xn

 = x′Ax. (329)

Then we may write Q : Rn → R, where Q(x) = x′Ax for all x ∈ Rn.

The quadratic form takes quite a common occurrence in practical applications. For instance, see mul-

tivariate normal density (Equation 700), factor hedging objectives (Equation 1309) and mean-variance

portfolios (Equation 204).

Exercise 71. Consider the quadratic form Q2(x, y, z) = x2 + 2y2 + z2 + 2xz, see that we may write

Q2(x, y, z) =
(
x y z

)1 0 1

0 2 0

1 0 1


xy
z

 . (330)

Exercise 72 (Simplification of Quadratic Forms). Let Q(x) = x′Ax be a quadratic form for x′ =

(x1 · · · xn), and n × n symmetric matrix A. We would like to simplify the quadratic form. Since A is

symmetric, apply algorithm in Exercise 70 to obtain orthogonal P s.t P ′AP = D, where D is diagonal

matrix with (i, i) entry λi, i ∈ [n]. Next, define new variables yi, i ∈ [n] s.t. y = P ′x = P−1x. Then

x = Py and we may write

Q(x) = Q(Py) = (Py)′A(Py) = y′P ′APy = y′Dy =

n∑
i

λiy
2
i . (331)

Exercise 73. Consider again the quadratic form Q2(x, y, z) = x2 + 2y2 + z2 + 2xz as in Exercise 71,

then we perform simplification of this quadratic form as suggested in Exercise 72. By algorithm presented

in Exercise 70, obtain orthogonal matrix P =


1√
2

0 − 1√
2

0 1 0
1√
2

0 1√
2

. Then P ′

1 0 1

0 2 0

1 0 1

P =

2 0 0

0 2 0

0 0 0

.

Defining the variables x
′

y′

z′

 = P ′

xy
z

 =


1√
2
(x+ z)

y
1√
2
(−x+ z)

 . (332)
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Then we may write the quadratic form

Q2(x, y, z) = (x′ y′ z′)

2 0 0

0 2 0

0 0 0


x

′

y′

z′

 = 2x′2 + 2y′2 = (x+ z)2 + 2y2. (333)

Definition 85 (Quadratic Equation and Associated Quadratic Forms). A quadratic equation in two

variables x, y takes form

ax2 + bxy + cy2 + dx+ ey = f, (334)

where a, b, c, d, e, f ∈ R and ∃, a, b, c ̸= 0. We may express

(x y)

(
a 1

2b
1
2b c

)(
x

y

)
+ (d e)

(
x

y

)
= f. (335)

Denote

x =

(
x

y

)
, A =

(
a 1

2b
1
2b c

)
, b =

(
d

e

)
, (336)

so that the quadratic equation is written x′Ax+ b′x = f . The x′Ax term (expanded, ax2 + bxy + cy2) is

called a quadratic form associated with the quadratic equation.

A quadratic equation (Definition 85) represents graphically a conic section; a conic section is degen-

erated if it is empty set, point, line, pair of lines, and non-degenerated if it is circle, ellipse, hyperbola or

parabola. A non-degenerated conic section is said to be standard form if it takes one of form in Table

3.1.

Table 3.1: Standard Forms for Conic Section

N-D Form Equation Quadratic Form

Circle/Ellipse x2

α2 + y2

β2 = 1 (x y)

(
1
α2 0

0 1
β2

)(
x

y

)
= 1

Hyperbola x2

α2 − y2

β2 = 1 (x y)

(
1
α2 0

0 − 1
β2

)(
x

y

)
= 1

Hyperbola − x2

α2 + y2

β2 = 1 (x y)

(
− 1
α2 0

0 1
β2

)(
x

y

)
= 1

Parabola x2 = αy (x y)

(
1 0

0 0

)(
x

y

)
+
(
0 −α

)(x
y

)
= 0

Parabola y2 = αx (x y)

(
0 0

0 1

)(
x

y

)
+
(
−α 0

)(x
y

)
= 0

Exercise 74. Consider the quadratic equation 2x2+24xy+9y2+20x−6y = 5. Show this can be written

as standard form of hyperbola.

Proof. The quadratic equation may be written

(x y)

(
2 12

12 9

)(
x

y

)
+
(
20 −6

)(x
y

)
= 5. (337)
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Obtain orthogonal matrix P =

(
3
5

−4
5

4
5

3
5

)
s.t. P ′

(
2 12

12 9

)
P =

(
18 0

0 −7

)
= D. Define

(
x′

y′

)
=

P ′

(
x

y

)
, then the quadratic equation becomes

(x′ y′)D

(
x′

y′

)
+
(
20 −6

)( 3
5 − 4

5
4
5

3
5

)(
x′

y′

)
= 5. (338)

Then

18x′2 − 7y′2 +
36

5
x′ − 98

5
y′ = 5 (339)

18(x′ +
1

5
)2 − 7(y′ +

7

5
)2 = −8 (340)

−
(x′ + 1

5 )
2

4/9
+

(y′ + 7
5 )

2

8/7
= 1. (341)

Exercise 75. Let A be square matrix order 2, and assume characteristic polynomial λ2+mλ+n. Then

show that m = −tr(A) (Definition 41), n = det(A).

Proof. Define arbitrary matrix A =

(
a b

c d

)
, then

det(λ1−A) =

∣∣∣∣∣λ− a −b
−c λ− d

∣∣∣∣∣ = (λ− a)(λ− d)− (−b)(−c) = λ2 + (−a− d)λ+ (ad− bc). (342)

Then m = −a− d = −tr(A), the negative sum of diagonals in A and n = det(A).

Exercise 76. Let λ be eigenvalue of square matrix A, then

1. show λn is eigenvalue of An, where n ∈ Z+,

2. if A invertible, show 1
λ is eigenvalue of A−1.

3. show λ is eigenvalue of A′.

Proof. -

1. We prove by induction. For j = 1, Ajx = λx. Assume for j < n, that Ajx = λjx. Then for j + 1,

see Aj+1x = AAjx = Aλjx = λj+1x. By induction we are done.

2. Let x be eigenvector associated with λ, then Ax = λx =⇒ x = A−1(λx) = λA−1x, which implies
1
λx = A−1x.

3. We prove using the transpose-determinant relation. λ is eigenvalue of A if it satisfies characteristic

equation det(λ1−A) = 0. See det(λ1−A) = det((λ1−A)′) = det(λ1−A′) = 0, so λ is eigenvalue

of A′.

Exercise 77. Let A be square matrix s.t A2 = A, then

1. show that if A has eigenvalue λ, it must be either zero or one.
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2. find the matrix size 2× 2 (possibly many) A with eigenvalues zero and one.

Proof. -

1. Let x be eigenvector associated with λ, then A2 = A =⇒ A2x = Ax =⇒ λ2x = λx =⇒
λ(λ− 1)x = 0.

2. Since A has two distinct eigenvalues, ∃P =

(
a b

c d

)
s.t. P−1AP =

(
1 0

0 0

)
, and using the classical

adjoint, write (Theorem 23)

P−1 =
1

det(P )

(
d −c
−b a

)′

s.t (343)

A = P

(
1 0

0 0

)
P−1 =

1

det(P )

(
a 0

c 0

)(
d −b
−c a

)
=

1

det(P )

(
ad −ab
cd −cb

)
. (344)

We require that det(P ) = ad− bc ̸= 0.

Exercise 78. Let A be square matrix order n, A2 = 0 but A ̸= 0. Then

1. show that the only possible eigenvalue is 0,

2. argue if A is diagonalizable or not,

3. for u ∈ Rn, Au ̸= 0, prove (u,Au) linearly independent,

4. for n = 2, ∃ invertible P satisfying P−1AP =

(
0 0

1 0

)
.

Proof. -

1. For x ̸= 0, Ax = λx, see that A2 = 0 =⇒ A2x = 0x =⇒ A(λx) = 0 =⇒ λ2x = 0 iff λ = 0.

2. Not diagonalizable, since if it is, ∃P s.t. P−1AP = 0, A = P0P−1 = 0 but A ̸= 0.

3. Consider au + bAu = 0 =⇒ A(au + Au) = A0 =⇒ aAu + A2u = 0 =⇒ aAu = 0, but Au ̸= 0

so a = 0. Then bAu = 0 but Au ̸= 0 so b = 0. So a, b = 0 and we are done.

4. We show by construction. Let P =
(
u Au

)
, which is invertible by Theorem 72 and see AP =(

Au A2u
)

=
(
Au 0

)
. Also, P

(
0 0

1 0

)
=
(
0u+Au 0u+ 0Au

)
=
(
Au 0

)
. Then AP =

P

(
0 0

1 0

)
and the result follows.

Exercise 79. Let {ui, i ∈ [n]} be basis spanning Rn, and A be square matrix order n satisfying Aui =

ui+1 for i ∈ [n − 1], Aun = 0. Show the only possible eigenvalue of A = 0, and find all the associated

eigenvectors.
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Proof.

∀i ∈ [n], Anui = An−1ui+1 = · · · = Aiun = 0. (345)

For v ∈ Rn where Av = λv and v =
∑n
i ciui, we can write

Anv =

n∑
i

ciA
nui = 0. (346)

Since Anv = λnv (see Exercise 76) but v ̸= 0, λ = 0 and the eigenvalue must be zero. To get all the

eigenvectors, write

0 = Av =

n∑
i=1

ciAui =

n−1∑
i=1

ciui+1 + cn0. (347)

All u2, · · · , un are linearly independent, so ci’s are zero for i ∈ [n − 1] and v = cnun. The eigenvectors

are just vectors in span{un}.

Exercise 80. Determine the values of a, b s.t.

(
a 1

0 b

)
is diagonalizable.

Proof. Consider the characteristic equation∣∣∣∣∣λ− a −1
0 λ− b

∣∣∣∣∣ = 0↔ (λ− a)(λ− b) = 0. (348)

Then the eigenvalues are a and b. If a = b, then consider the HLS

(
λ− a −1
0 λ− a

)
x = 0, with λ = a,

which would clearly have nullspace spanned by a single vector. Then the matrix is not diagonalizable.

Otherwise, we have two distinct eigenvalues, and by Corollary 6, the matrix is diagonalizable.

Exercise 81. Square matrices A,B are similar if ∃P s.t. P−1AP = B. If A,B similar, then prove the

following statements hold true.

1. An, Bn similar ∀n ∈ Z+.

2. If A invertible, B invertible and A−1, B−1 similar.

3. If A diagonalizable, B diagonalizable.

Proof. -

1. Bn = (P−1AP )(P−1AP ) · · · (P−1AP ) = P−1AnP .

2. B−1 = (P−1AP )−1 = P−1A−1P .

3. If ∃Q s.t. Q−1AQ = D, define R = P−1Q, then R is invertible (Theorem 14) and R−1BR =

Q−1PBP−1Q = Q−1AQ = D.

Exercise 82. A square matrix A order n is stochastic matrix if all entries are ≥ 0 and the sum of

entries in each column is one. Show that 1 is eigenvalue of a stochastic matrix and for any eigenvalue

λ, |λ| ≤ 1.
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Proof. See that for stochastic matrix A, for all i ∈ [n],
∑n
j aji = 1. Then A′

(
1 1 · · · 1

)′
=(

1 1 · · · 1
)′
. Recall that one is eigenvalue of A′ iff it is eigenvalue of A (Exercise 76). For the

second assertion, suppose A′x = λx for some x ̸= 0. For k = argmax |xj |, j ∈ [n], see that |xk| > 0 since

x ̸= 0. Define the access operator [·] s.t. a[i] accesses the value at i-th coordinate of a. Then

(A′x)[k] =

n∑
i

aikxi = λxk =⇒ |λ||xk| = |
n∑
i

aikxi| ≤
n∑
i

|aikxi| ≤
n∑
i

aik|xi| ≤ (

n∑
i

aik)|xk| = |xk|.

We used the triangle inequality (Exercise 69) and property aij ≥ 0. The statement implies |λ| ≤ 1.

Exercise 83 (Matrix Exponentiation). Let A be square matrix, then exponential for A is the matrix

exp(A) = 1+A+
1

2!
A2 + · · · =

∞∑
n=1

1

n!
An. (349)

Compute exp(A) for A =

(
3 0

8 −1

)
.

Proof. Obtain matrix P−1AP =

(
2 0

0 4

)
for P =

(
−1 1

1 1

)
. Then An = P

(
2n 0

0 4n

)
P−1 and

exp(A) = P

(
1 + 1

1!2 +
1
2!2

2 + · · · 0

0 1 + 1
1!4 +

1
2!4

2 + · · ·

)
P−1 (350)

using the Taylor expansions exp(x) =
∑∞
n=0

1
n!x

n.

Exercise 84. Determine which are true:

1. A diagonalizable implies A′ diagonalizable.

2. A,B diagonalizable implies A+B diagonalizable.

3. A,B diagonalizable implies AB diagonalizable.

Proof. -

1. True, since for P−1AP = D we can write

D = D′ = (P−1AP )′ = P ′A′(P−1)′ = P ′A′(P ′)−1. (351)

2. False by counterexample A =

(
2 0

0 0

)
, B =

(
0 0

1 2

)
.

3. False by counterexample A =

(
2 0

0 1

)
, B =

(
1 0

1 2

)
.

Exercise 85. Let u be some column matrix, then show that 1− uu′ is orthogonally diagonalizable.

Proof. (uu′)′ = uu′ =⇒ (1− uu′) = (1− uu′)′ (it is symmetric).

Exercise 86. Let A be symmetric matrix, if Au = λu,Av = µv, λ ̸= µ, show that u · v = 0.
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Proof. v′Au = v′(λu) = λv′u = λ(v · u) and by symmetricity v′Au = v′A′u = (Av)′u = (µv)′u = µv′u =

µ(v · u) implies λ(v · u) = µ(v · u) =⇒ (λ− µ)(v · u) implies v · u = 0 since λ ̸= µ.

Exercise 87. Determine which are true: If A,B orthogonally diagonalizable,

1. then A+B orthogonally diagonalizable.

2. then AB orthogonally diagonalizable.

Proof. -

1. True, since A,B orthogonally diagonalizable iff A = A′, B = B′ implies A+B = A′+B′ = (A+B)′.

2. False by counterexample A =

(
1 0

0 0

)
, B =

(
0 1

1 0

)
.

Exercise 88. Let there be real constants λ1 ≤ λ2 ≤ λ3. Then

1. Show λ1 is the minimum value of
∑3
i λix

2
i for all real numbers x1, x2, x3 satisfying

∑3
i x

2
i = 1.

2. Show λ3 is the maximum value satisfying conditions in part 1.

3. Find the minimum and maximum values of u′Qu for all vectors u in R3 where Q =

 2 −1 0

−1 2 −1
0 −1 2


with constraint ∥u∥ = 1.

Proof. -

1. See that if we define (x1, x2, x3) = (1, 0, 0), then
∑3
i x

2
i = 1,

∑n
i λix

2
i = λ1. The minimum value

must be ≤ λ1. On the other hand, if
∑3
i x

2
i = 1,

∑3
i λix

2
i ≥

∑3
i λ1x

2
i = λ1(

∑3
i x

2
i ) = λ1. The

result follows.

2. The second part follows by the same technique as in part 1.

3. Solve for eigenvalues of Q to obtain 2−
√
2, 2, 2+

√
2. Then ∃P s.t P ′QP = D where D is diagonal

matrix with diagonal entries 2−
√
2, 2, 2 +

√
2. Define P ′u = (x1, x2, x3)

′, then

u′Qu = u′(PP ′)Q(PP ′)u = (P ′u)′(P ′QP )(P ′u) = (2−
√
2)x21 + 2x22 + (2 +

√
2)x23 (352)

and u′u = u′(PP ′)u = (P ′u)′(P ′u) =
∑3
i x

2
i . The minimum value is 2 −

√
2 and maximum value

2 +
√
2.

Exercise 89. Name the conic section and write the standard form represented by a non-degenerated

conic section satisfying

(x y)A

(
x

y

)
(353)

where A is symmetric matrix order 2 with eigenvalues 1, 4.
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Proof. There exists orthogonal P s.t. P ′AP = D with diagonal entries 1, 4. Define

(
x′

y′

)
= P ′

(
x

y

)
,

then (
x y

)
A

(
x

y

)
= 8↔

(
x′ y′

)
P ′AP

(
x′

y′

)
= 8↔ x′2

8
+
y′2

2
= 1. (354)

This is ellipse (see Table 3.1).

3.1.7 Linear Transformations

Definition 86. A linear transformation is a mapping T : Rn → Rm of form

T =



x1

x2

· · ·
xn


 =


a11 a12 · · · a1n

a21 · · · · · · a2n

· · · · · · · · · · · ·
am1 am2 · · · amn


︸ ︷︷ ︸

A


x1

x2

· · ·
xn

 , (355)

where aij ∈ R for i ∈ [m], j ∈ [n]. A is called the standard matrix. When T is mapping from Rn → Rn,
then it is called a linear operator. For brevity, if we wish to indicate the dimension of the domain and

images under T , we notate

T is linear transformation from Rn → Rm ≡ T (m)
n . (356)

In abstract linear algebra, we define T : V →W to be a mapping from vector space V to W , and say

it is linear transformation if ∀u, v ∈ V, c, d ∈ R, T (cu+ dv) = cT (u) + dT (v) is satisfied.

An example of a linear transformation is the identity transformation I : Rn → Rn s.t. I(u) = u for

all u ∈ Rn. The standard matrix is 1. Another is the zero transformation O : Rn → Rm s.t. O(u) = 0

for all u ∈ Rn. The standard matrix is 0m×n.

Suppose we have linear transformation T : R2 → R3 s.t.

T

((
x

y

))
=

x+ y

2x

−3y

 =

1 1

2 0

0 −3

(x
y

)
∀

(
x

y

)
∈ R2. (357)

See that standard matrix is

1 1

2 0

0 −3

.

Theorem 76. Let T = Rn → Rm be linear transformation,

1. T (0) = 0,

2. ∀ui ∈ Rn, ci ∈ R,

T (

k∑
i

ciui) =

k∑
i

ciT (ui). (358)

Proof. Let A be standard matrix for T , then T (u) = Au by definition for u ∈ Rn and we may apply the

properties of matrix operations. In particular, T (0) = A0 = 0, T (
∑
ciui) = A(

∑
ciui) =

∑
ciAui =∑

ciT (ui) by Theorem 6.
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We may use Theorem 76 to check if a function given is a linear transformation or not.

Exercise 90. Show that T
(m)
n is linear transformation iff T (cu+ dv) = cT (u) + dT (v) for all u, v ∈ Rn,

c, d ∈ R.

Proof. →: follows immediately from Theorem 76. ←: suppose ∀u, v ∈ Rn and c, d ∈ R, we have

T (cu + dv) = cT (u) + dT (v). Let {ei, i ∈ [n]} be basis for Rn and A =
(
T (e1) · · · T (en)

)
. For

arbitrary u ∈ Rn, we may express u =
∑n
i uiei, see that

T (u) =

n∑
i

uiT (ei) =
(
T (e1) · · · T (en)

)

u1

u2

· · ·
un

 = Au, (359)

so T is linear transformation.

Let {ui, i ∈ [n]} be basis spanning Rn, then ∀v ∈ Rn, see that we may write v =
∑n
i ciui, and by

Theorem 76, T (v) =
∑n
i ciT (ui). It follows that the image T (v) of v is determined completely by the

images T (ui)’s of basis vectors ui.

Exercise 91. Let T : R3 → R2 be linear transformation

T


1

1

1


 =

(
1

3

)
, T


0

1

1


 =

(
−1
2

)
, T


 2

0

−1


 =

(
4

−1

)
. (360)

Then

1. find the image of vector

−14
6

 under T and

2. find formula representing T .

Proof. The vectors {(1, 1, 1)′, (0, 1, 1)′, (2, 0,−1)′} are basis for R3. Writing (−1, 4, 6)′ as l.c of the ele-

ments in the basis, solve for the linear system−14
6

 = c1

1

1

1

+ c2

0

1

1

+ c3

 2

0

−1

 . (361)

The solution yields c1 = 3, c2 = 1, c3 = −2, and therefore the image is

T


−14

6


 = T

3

1

1

1

+

0

1

1

− 2

 2

0

−1


 (362)

= 3T


1

1

1


+ T


0

1

1


− 2T


 2

0

−1


 = 3

(
1

3

)
+

(
−1
2

)
− 2

(
4

−1

)
=

(
−6
13

)
.
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We repeat the steps in part 1, except on arbitrary vector in R3. Solve (x, y, z) = c1(1, 1, 1)+ c2(0, 1, 1)+

c3(2, 0,−1) to get solution c1 = x− 2y+2z, c2 = −x+3y− 2z and c3 = y− z. Then the general formula

is

T


xy
z


 = (x− 2y + 2z)

(
1

3

)
+ (−x+ 3y − 2z)

(
−1
2

)
+ (y − z)

(
4

−1

)
=

(
2x− y

x− y + 3z

)
. (363)

From the previous exercise, it follows that for T : Rn → Rm, standard basis {ei, i ∈ [n]} (Definition

56), we have T (ei) = Aei as column i of the standard matrix. The images T (ei) for i ∈ [n] completely

define T .

Exercise 92 (Obtaining standard matrix via Gauss Jordan Elimination). Consider the linear transfor-

mation in Exercise 91 - here we obtain the standard matrix directly via GJE (Theorem 5). Take 1 0 2 1 0 0

1 1 0 0 1 0

1 1 −1 0 0 1

→
 1 0 0 1 −2 2

0 1 0 −1 3 −2
0 0 1 0 1 −1

 . (364)

Then each of the basis elements are written as l.c1

0

0

 =

1

1

1

−
0

1

1

 ,

0

1

0

 = −2

1

1

1

+ 3

0

1

1

+

 2

0

−1

 ,

0

0

1

 = 2

1

1

1

− 2

0

1

1

−
 2

0

−1

 .(365)

Then T ((1, 0, 0)′) = T ((1, 1, 1)′) − T ((0, 1, 1)′) = (1, 3)′ − (−1, 2)′ = (2, 1)′ and so on, and the standard

matrix is just (T (e1) T (e2) T (e3)).

Definition 87. Let S : Rn → Rm, T : Rm → Rk be linear transformations. Then define the composition

of T with S, T ◦ S as mapping Rn → Rk that satisfies

(T ◦ S)(u) = T (S(u)) u ∈ Rn. (366)

Theorem 77. If we have S
(m)
n , T

(k)
m , then (T ◦S)(k)n , that is T ◦S is linear transformation Rn → Rk. If

A,B is standard matrix for S
(m)
n , T

(k)
m , then standard matrix for (T ◦ S)(k)n is BA.

Proof. For u ∈ Rn, then (T ◦ S)(u) = T (S(u)) = T (Au) = BAu. T ◦ S is linear transformation with

standard matrix BA.

3.1.7.1 Ranges and Kernels

Definition 88. For T
(m)
n , denote R(T ) as the range of T , and this is the set of images of T ,

R(T ) = {T (u) | u ∈ Rn} ⊆ Rm. (367)

Theorem 78. Let T
(m)
n and {ui, i ∈ [n]} be basis for Rn. Then recall that T (v :=

∑n
i civi) ∈

span{T (ui), i ∈ [n]} for all v ∈ Rn by Theorem 76. It follows that R(T ) ⊆ span{T (ui), i ∈ [n]}. On the

other hand, see that ∀i ∈ [n],
∑
ciT (ui) = T (

∑
ciui) ∈ R(T ) by Theorem 76, so R(T ) ⊇ span{T (ui), i ∈

[n]}. Then R(T ) = span{T (ui), i ∈ [n]}.

Theorem 79. Let A be standard matrix for T
(m)
n , then R(T ) = colSpace(A).
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Proof. Let {ei, i ∈ [n]} be standard basis for Rn, and since column i of A is T (ei), then by Theorem 78,

R(T ) = span{T (ei), i ∈ [n]} = colSpace(A).

Definition 89. Let T be linear transformation. Then dim(R(T )) is called rank of T , and we denote this

rank(T ). See that by Theorem 79, for standard matrix A of T , rank(A) = rank(T ).

Definition 90. Let T
(m)
n , then the kernel of T is denoted ker(T ) and is the set of vectors in Rn that

maps to the zero vector in Rm,

ker(T ) = {u|T (u) = 0} ⊆ Rn. (368)

Theorem 80. For T
(m)
n with standard matrix A, ker(T ) = nullSpace(A).

Proof. See that ker(T ) = {u|T (u) = 0} = {u|Au = 0}, which by definition is the nullspace (Definition

64).

Definition 91. Let T be linear transformation, then dim(ker(T )) is called nullity of T and we denote

this nullity(T ). See that for standard matrix A for T , nullity(T ) = nullity(A).

Theorem 81 (Rank-Nullity Theorem, Linear Transformations). It is trivial to see from reasoning in

Theorem 51 that rank(T ) + nullity(T ) = n for T
(m)
n .

Exercise 93. For T, T1, T2 linear transformations from Rn → Rm with standard matrices A,A,B respec-

tively, define (T1 + T2)
(m)
n s.t (T1 + T2)(u) = T1(u) + T2(u) for all u ∈ Rn. Additionally, define (λT )

(m)
n

s.t. (λT )(u) = λT (u) for all u ∈ Rn. Show that that (T1 + T2), λT are both linear transformations and

find their standard matrices.

Proof. It is easy to see by the duality between a linear transformation and its standard matrix both

results. That is, (T1 + T2)(u) = T1(u) + T2(u) = Au+Bu = (A+B)u, and (λT )(u) = λT (u) = λAu =

(λA)u.

Exercise 94. Let T
(n)
n be linear operator, and if ∃S(n)

n s.t. S ◦ T = 1, the identity transformation, then

T is said to be invertible with inverse S. For invertible T , standard matrix A, find standard matrix for

inverse of T .

Proof. See S(T (u)) = S(Au) = 1 iff S(Au) = A−1(Au) so the standard matrix is A−1 for S.

Exercise 95. Let n be unit vector Rn, and define P
(n)
n s.t. P (x) = x − (n · x)n for all x ∈ Rn. Then

show that P is linear transformation, find its standard matrix and prove that P ◦ P = P .

Proof. Note that the term n · x = n′x is ‘commutative’ since it is scalar.

∀x ∈ Rn, P (x) = x− (n · x)n = 1x− nn′x = (1− nn′)x, (369)

so P is linear transformation with standard matrix 1− nn′. Next, write

(P ◦ P )(x) = P (P (x)) = P (x− (n · x)n) (370)

= x− (n · x)n− (n · (x− (n · x)n))n (371)

= x− (n · x)− ((n · x)− (n · x)(n · n))n (372)

= x− (n · x)n (373)

= P (x). (374)
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Exercise 96. Let T
(n)
n be linear transformation and T ◦ T = T .

1. If T is not zero transformation, show ∃u ̸= 0 ∈ Rn s.t. T (u) = u.

2. If T is not identity transformation, show ∃v ̸=∈ Rn s.t. T (v) = 0.

3. Find all linear transformations T
(n)
n satisfying T ◦ T = T .

Proof. -

1. Since T is not zero transformation, then ∃x ∈ Rn s.t T (x) ̸= 0, and defining u = T (x), we have

T (u) = T (T (x)) = (T ◦ T )(x) = T (x) = u.

2. If T is not identity, then there exists y ∈ Rn s.t. T (y) ̸= y. Then for v = T (y)− y,

T (v) = T (T (y)− y) = T (y)− T (y) = 0. (375)

3. See Exercise 77.

Exercise 97. Let n be unit vector ∈ Rn, and F (n)
n s.t F (x) = x− 2(n · x)n for all x ∈ Rn, then

1. show that F is linear transformation, and find its standard matrix.

2. prove F ◦ F = 1, the identity transformation.

3. show that the standard matrix for F is orthogonal matrix.

Proof. -

1.

∀x ∈ Rn, F (x) = x− 2(n · x)n = 1x− 2nn′x = (1− 2nn′)x. (376)

The standard matrix is 1− 2nn′.

2. Use the standard matrix and compute (1− 2nn′)(1− 2nn′) = 1− 2nn′ − 2nn′ + 4n(n′n)n′ = 1.

3. See that (1− 2nn′) is symmetric, and by part 2 we get (1− 2nn′)′(1− 2nn′) = 1.

Exercise 98. A linear operator T
(n)
n is isometry of ∥T (u)∥ = ∥u∥ for all u ∈ Rn.

1. If T is isometry on Rn, then show T (u) · T (v) = u · v for all u, v ∈ Rn.

2. Let A be standard matrix for linear operator T
(n)
n . Show T is isometry iff A is orthogonal matrix.

Proof. 1.

T (u+ v) · T (u+ v) = (T (u) + T (v)) · (T (u) + T (v)) (377)

= T (u) · T (u) + T (v) · T (v) + 2(T (u) · T (v)) (378)

= ∥T (u)∥2 + ∥T (v)∥2 + 2(T (u) · T (v)) (379)

= ∥u∥2 + ∥v∥2 + 2(T (u) · T (v)), (380)
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and

T (u+ v) · T (u+ v) = ∥T (u+ v)∥2 = ∥u+ v∥2 = (u+ v) · (u+ v) (381)

= u · u+ v · v + 2(u · v) (382)

= ∥u∥2 + ∥v∥2 + 2(u · v). (383)

2. ∥T (u)∥ = ∥Au∥ = ∥u∥ (see Exercise 62). On the other hand, if T is isometry and {ei, i ∈ [n]}
is standard basis (Definition 56), then (Aei) · (Aej) = (Aei)

′Aej = e′iA
′Aej = (A′A)ij , but

(Aei)
′Aej = T (ei) · T (ej) = ei · ej = δij , so A

′A = 1.

Exercise 99. Find the nullity of T given these information respectively:

1. T
(6)
4 , rank(T ) = 2.

2. R(T
(4)
6 ) = R4.

3. RREF (T
(6)
6 ) has four nonzero rows.

Proof. The nullity of T for part 1) is 2, part 2) is 2, and part 3) is 2.

Exercise 100. Let T
(n)
n be linear operator T (v) = 2v, then find the kernel and range of T .

Proof. The kernel is the zero space and range is Rn.

Exercise 101. Let V be subspace of Rn, and define P
(n)
n s.t. ∀u ∈ Rn, P (u) is projection u onto V

(see Definition 77). Then show P is linear transformation. If n = 3, and V is plane ax+ by + cz = 0,

∃a, b, c ̸= 0, find ker(P ), R(P ).

Proof. Let {vi, i ∈ [k]} be orthonormal basis spanning V , then by Theorem 58, we may express P (u) =∑k
i (u · vi)vi = (

∑k
i viv

′
i)u. ker(P ) = span{(a, b, c)}, R(P ) = V .

Exercise 102. Show for T
(m)
n , ker(T ) = {0} iff T is one-to-one.

Proof. If ker(T ) = {0}, then for u, v satisfying T (u) = T (v), we have T (u− v) = T (u)− T (v) = 0 =⇒
u− v = 0, so u = v. On the other hand, if T is one-to-one, then since T (0) = 0, only 0 maps to image 0

under T , so the kernel of T must only contain 0 - then ker(T ) = {0}.

Exercise 103. For S
(m)
n , T

(k)
m , show

1. ker(S) ⊆ ker(T ◦ S),

2. R(T ◦ S) ⊆ R(T ).

Proof. -

1. u ∈ ker(S) =⇒ S(u) = 0 =⇒ (T ◦ S)(u) =⇒ T (S(u)) = T (0) = 0 =⇒ u ∈ ker(T ◦ S) =⇒
ker(S) ⊆ ker(T ◦ S).

2. v ∈ R(T ◦ S) =⇒ ∃u s.t v = (T ◦ S)(u) =⇒ v = T (S(u)) = T (w) for w := S(u) =⇒ v ∈
R(T ) =⇒ R(T ◦ S) ⊆ R(T ).
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