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Abstract

We add the Enhanced Portfolio Optimization (EPO, Pedersen et al. [1]3 ) to the Russian

Doll testing engine, alongside other methods previously added to the Python library. Here we

give succinct, key summary of the intuition behind the EPO portfolio. The code is appended

to the attendant post on hangukquant.com. The datasets are also found in the post.

0.1 A Note of Precaution

There is absolutely no warranty or guarantee implied with this product. Use at your own risk. I

provide no guarantee that it will be functional, destructive or constructive in any sense of the word.

Use at your own risk. Trading is a risky operation.

1 Review of Key Arguments

The detailed arguments and in depth analysis of the Enhanced Portfolio Optimization method is

found in the paper referenced. We repeat the core arguments. Recall (in the absence of long-only

constraints), the rational investor (with accompanying utility and normality assumptions) make
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the choice maxx(x
′s − γ

2x
′Σx), where x is the portfolio weight, s is the expected return and Σ is

the covariance matrix of asset returns. The closed form solution to this is based on the first order

condition and yields the mean variance optimal portfolio x∗ = 1
γΣ

−1s. The (symmetric, semi-

positive definite) covariance matrix has variance-correlation decomposition given by Σ = σΩσ,

where σ = diag((
√
Σii)i∈[len(x)]), and Ω is the correlation matrix of asset returns. The correlation

matrix is symmetric and hence orthogonally diagonalizable (see our linear algebra notes); it has

eigenvector decomposition. Using principal component analysis, we map the portfolios onto unit

variance space, where the set of principal component portfolios are orthogonal (more specifically,

orthonormal). In particular, the first principal component portfolio is the weighting h that max-

imises the variance h′Ωh s.t. h′h = 1. The second principal component maximises h′Ωh subject to

h′h = 1 and being orthogonal to the first principal component and so on. The proportion of variance

explained by these principal component portfolios successively decrease. The eigen-decomposition

can be written Ω = PDP ′ where P ′ = P−1 and matrix P are columns of eigenvectors of orthog-

onal portfolios in the unit variance space (our principal components). The principal component

portfolios have expected excess returns sp = P ′σ−1s and covariance matrix given by the diagonal

D. Using the property that for diagonal matrix D, we have D = D′, and Dp = (dpij), we may

reformulate the investor utility function

x′s− γ

2
x′Σx = (P ′σx)′sp − γ

2
(P ′σx)′D(P ′σx) = z′sp − γ

2
z′Dz, (1)

where z = P ′σx are weighting for investments in the principal component portfolios. As in classical

MVO the investor makes the investment z∗ = 1
γD

−1sp, and by orthogonality the portfolio-wise

investment made is z∗i = 1
γ

spi√
Di

1√
Di

, a product of the i-th principal component portfolio sharpe

and factor 1√
Di

. This equation tells us that the estimation error in spi is magnified by 1√
Di

, the

value of which is the largest in the least significant principal component portfolios. The low risk

also bloats the estimation of Sharpe ratios of these portfolios. These portfolios are coined as the

‘problem portfolios’, and the EPO shrinkage targets this by shrinking the estimated variance of

these principal component portfolios towards the average. Recall from the linear algebra notes that

tr(AB) = tr(BA). Then tr(Ω) = tr(PDP ′) = tr(DP ′P ) = tr(D1) = tr(D). The shrinkage is

simply towards identity since Ω is correlation matrix with diagonal ones; the shrinkage solution to

the correlation matrix becomes

Ω̃ = PD̃P ′ = P ((1− θ)D + θ1)P ′ = (1− θ)Ω + θ1, (2)
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with covariance matrix estimator σΩ̃σ as input to the mean variance optimization problem. We

implemented the shrinkage θ = 0.75 in the code as mentioned in the paper, but it should be trivial

for readers to extend this and run their own in-sample walkforward optimization for dynamic

shrinkage values.

2 Notes

The updated Russian Doll Python library is found on the post. These can be applied to arbitrary

strategies by specifying the configurations dictionary as input to the Amalgapha object. For in-

stance, these configurations all specify different, valid instructions to the multi-strategy backtester

for combining active alphas:

{"framework": "parity"},

{"framework": "parity","positional_inertia": 0.15},

{"framework": "quadratic_risk_lc","ret": {"est": "simple_mean"},"cov": {"est": "sample"}},

{"framework": "quadratic_risk_lc","ret": {"est": "simple_mean"},"cov": {"est": "ledwol_cc"}},

{"framework": "quadratic_risk_lc","ret": {"est": "simple_mean"},"cov": {"est": "aqr_epo_2020"}}

The datasets are found on the mega.nz link on the post. Once a dataset is posted in a newer post, the

old links will be taken down. The master.json file contains the datasets and formulaic alphas that are used

in the simulation. The entries are SHA256 hash values that point to a simulation dataframe created by the

Russian Doll backtesting module. For readers who want to play around with these simulation data, you can

download them from the ‘simulation data numX.lz’ files. The simulation dataframe contains information

such as portfolio holdings, weightings, pnl, execution costs (assumed net of 0.1% notional volume), cost-free

returns, leverage applied and so on. The universe of assets (all US stocks) are easily recoverable from any of

the simulation dataframes. Readers may obtain the pricing data from any of the open-source data libraries

or commercial datasets. All lz files are Python pickles that can be loaded by running the code:

with lzma.open(path, ’rb’) as fp:

file = pickle.load(fp)

These are not compulsory, since the Russian Doll module is designed to work with arbitrary strategies.

Readers should be able to pass in their own proprietary trading strategies and run the optimization code

should they be so willing.
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3 On Future Work

We make some comments in the post on the efficacy of these portfolio management methods. For the weeks to

come, we will continue to review, discuss and implement some of these portfolio methods found in literature

and integrate it into the Russian Doll. The takeaway should not be that any of these methods are ‘the golden

ticket’ to portfolio management. Our goal for the reader is to appreciate these methods and the variable

settings in which one may outperform the other, so that one may apply the correct method depending on

the nature of their own problem domain. If you are convinced that there is a golden solution that is the

answer to all of your portfolio management problems, the reader would be in for a ride of disappointment

with us (see No Free Lunch Theorem).
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