
to be determined. Adaptively chosen basis functions are known as dictionary methods, where one has

available possibly infinite set or dictionary D of candidate basis functions to choose from. The models

are then built and is equivalent to the search problem.

5.7 Model Selection, Bias-Variance Tradeoff

The models described in general have either a smoothing or complexity parameter that determines the

restriction of the model, such as the (i) λ penalty scalar, (ii) kernel width and (iii) number of basis

functions.

Consider the KNN case again, with Y = f(X) + ϵ,E[ϵ] = 0,Var[ϵ] = σ2. Assume for simplicity the

values of xi in sample are fixed and nonrandom. Then the expected prediction error at x0, known as the

test/generalization error can be decomposed into

EPEk(x0) = E[(Y − f̂k(x0))2|X = x0] (5.27)

= σ2 +Bias2(f̂k(x0)) + VarT (f̂k(x0)) (5.28)

= σ2 + [f(x0)−
1

k

k∑
l=1

f(x(l))]
2 +

σ2

k
. (5.29)

Note the parenthesis indicates the order statistic for the KNN selection. The first term, σ2 is known

as the irreducible error, and is present even if we knew the true f . We are able to control the other two

terms, which constitute the mean squared error of f̂k(x0) in estimation of f(x0), where we have the bias

and variance decomposition.

Definition 36 (Bias of Estimate). The bias is the difference between the true mean value of a random

variable and the expectation of our estimate. In the MSE decomposition of the generalization error, this

can be formulated ET [f̂k(x0)− f(x0)], where f(x0) is the non-random conditional mean at x0.

If the true function is reasonably smooth, the bias term likely increases with K in the nearest

neighbour method.

The variance term on the other hand, decreases as the inverse of K in nearest neighbours. In

the general function approximation paradigm, as the model complexity of our procedure increases, the

variance tends to increase and (squared) bias tends to decrease. We want to choose the model complexity

so that there is an attractive tradeoff between the bias and variance, so that the test error is minimized.

Although we can estimate test error with the training error (1/N)
∑

i(yi − ŷi), this is often not a good

estimate as it does not account for model complexity. The generalization issues and bias-variance tradeoff

leads to the classical U-shaped test error in relation to model complexity.

5.8 Least Squares Methods

5.8.1 Simple Least Squares

The simple linear regression model assumes data follows relationship

y = β0 + β1x+ ϵ (5.30)

, where ϵ is the random error assumed Eϵ = 0,Varϵ = σ2 (constant). The conditional mean response at

x shall then be E(Y |X = x) = µy|x = β0 + β1x, and conditional variance at x equivalent to Var(Y |X =
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x) = σ2
y|x = Var(β0 + β1x + ϵ) = σ2. Note then how the variance is assumed constant in this model -

we shall see how heteroscedasticity affects our model interpretations later on. Our least squares problem

reduces to the problem of finding coefficient estimates and ensuring their adequacy. For samples taken

from the population regression model, we assume i ̸= j =⇒ ϵi ⊥ ϵj , that errors (and hence responses)

are uncorrelated. In the simple linear regression equation (Equation 5.30), the β1 slope specifies the

change in the mean distribution of y under unit change in x.

5.8.1.1 Assumptions of the Simple Linear Equation

1. ∀i, j, i ̸= j =⇒ ϵi ⊥ ϵj

2. σ2 = Var(ϵ) = Var(ϵ|X = x) = k ∈ R.

5.8.1.2 Model Fitting

The hypothesis space of our simple linear regression problem is the set of all candidate lines specified by

{(β0, β1) : (β0, β1) ∈ R2}. From the sample regression model yi = β0 + β1xi + ϵi, i ∈ [n], we choose the

model that minimises the sum of squared errors S(β0, β1) =
∑

i ϵ
2
i =

∑
i(yi−β0−β1xi)2. We can easily

derive by standard calculus the estimators β̂0, β̂1 by solving the linear equations

δS

δβ0
= −2

∑
i

(yi − β̂0 − β̂1xi)
!
= 0 (5.31)

δS

δβ1
= −2

∑
i

xi(yi − β̂0 − β̂1xi)
!
= 0 with solutions (5.32)

nβ̂0 + β̂1
∑
i

xi =
∑
i

yi (5.33)

β̂0
∑
i

xi + β̂1
∑
i

x2i =
∑
i

yixi (5.34)

From Equation 5.33 we have β̂0 = ȳ − β̂1x̄, and substituting into Equation 5.34 we obtain

(ȳ − β̂1x̄)
∑
i

xi + β̂1
∑
i

x2i =
∑
i

yixi, (5.35)

β̂1(
∑
i

x2i − x̄
∑

xi) =
∑
i

yixi − ȳ
∑
i

xi (5.36)

This gives solution

β̂1 =

∑
i yixi −

∑
i yi

∑
i xi

n∑
i x

2
i −

(
∑

i xi)
2

n

(5.37)

=
Sxy

Sxx
(5.38)

where

Sxx =

(∑
i

x2i

)
−

(
∑

i xi)
2

n
=

(∑
i

x2i

)
− (nx̄)2

n
(5.39)

=

(∑
i

x2i

)
− nx̄2 =

(∑
i

x2i

)
+ nx̄2 − 2nx̄2 (5.40)

=
∑
i

(x2i + x̄2 − 2xix̄) =
∑
i

(xi − x̄)2 (5.41)

= (n− 1)s2 (5.42)
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and

Sxy =
∑

yixi −
∑

i yi
∑

i xi
n

=

(∑
i

yixi

)
− nȳnx̄

n
=

(∑
i

yixi

)
− nȳx̄ (5.43)

=
∑
i

yi(xi − x̄) (5.44)

and we obtain fitted model ŷ = β̂0 + β̂1x and residuals on sample i = ei = yi − β̂0 − β̂1xi. The least

squares can be computed by the formula:

numpy.linalg.lstsq(a, b, rcond=’warn’)

that computes the vector x that approximately solves the equation a @ x = b.

5.8.1.3 Model Properties and Variance of Estimates

Recalling that β̂1 =
Sxy

Sxx
=

∑
i yi(x−x̄)

Sxx
, we may express in form

∑
i ciyi where ci = (xi−x̄)

Sxx
. We see

easily that
∑

i ci = 0, and
∑

i cixi =
∑

i xi
xi−x̄∑
i(xi−x̄)2 =

∑
i(x

2
i−xix̄)∑

i(x
2
i+x̄2−2xix̄)

=
(
∑

i x
2
i )−nx̄2

(
∑

i x
2
i )+nx̄2−2nx̄2 = 1. Finally,∑

i c
2
i =

∑ (xi−x̄)2

S2
xx

= 1
Sxx

. This is, the slope estimator β̂1 is a linear combinations of the observations yi.

The least squares estimates are unbiased, in that Eβ̂1 = β1,Eβ̂0 = β0. The variance Var(β̂1) =

Var(
∑n

i=1 ciyi) =
∑

i c
2
iVar(yi) = σ2

Sxx
, since we showed

∑
i c

2
i = 1

Sxx
and we assumed the errors (and

accordingly response) are uncorrelated. The intercept variance follows Var(β̂0) = Var(ȳ−β̂1x̄) = Var(ȳ)+

x̄2Var(β̂1)−2x̄Cov(ȳ, β̂1) = σ2
(

1
n + x̄2

Sxx

)
where the covariance term drops off since Cov( 1nyi,

∑
i ciyi) =

1
n

∑
i ciVar(yi) and

∑
ci = 0.

The ordinary least squares estimators (β̂i), i ∈ [p+1] are the best linear, unbiased estimators, in that it

has the smallest variance compared to the other unbiased estimators formed from the linear combinations

of yi. Some useful results we arrive from the simple least squares method is that
∑

i(yi− ŷi) =
∑

i ei = 0,

which implies
∑
yi =

∑
ŷi. Not only are the sum of residuals zero, the regressor weighted errors and

fitted value weighted errors are zero. such that
∑

i xiei = 0,
∑

i ŷiei = 0. The fitted line always passes

through (x̄, ȳ).

We may obtain a point estimate of conditional variance of y given x using the residual sum of squares

SSres =
∑

i e
2
i =

∑
i(yi − ŷi)2. The residual sum of squares is a component of the total sum of squares,

which is relevant to the unconditional variance. Writing sum of total squares SST =
∑

i(yi − ȳ)2 and

noting ŷi = β̂0 + β̂1xi, then∑
i

(yi − ȳ)2 =
∑
i

(yi − ŷi + ŷi − ȳ)2 (5.45)

=
∑
i

(yi − ŷi)2 +
∑
i

(ŷi − ȳ)2 + 2
∑
i

[(yi − ŷi)(ŷi − ȳ)] (5.46)

=
∑
i

(yi − ŷi)2 +
∑
i

(ŷi − ȳ)2 + 2
∑
i

ŷi(yi − ŷi)− 2
∑
i

ȳ(yi − ŷi) (5.47)

=
∑
i

(yi − ŷi)2 +
∑
i

(ŷi − ȳ)2 + 2
∑
i

ŷiei − 2
∑
i

ȳei (5.48)

=
∑
i

(yi − ŷi)2 +
∑
i

(ŷi − ȳ)2 + 2
∑
i

ŷiei − 2ȳ
∑
i

ei (5.49)

=
∑
i

(yi − ŷi)2 +
∑
i

(ŷi − ȳ)2 (5.50)

= SSres +
∑
i

(ŷi − ȳ)2 (5.51)
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we see that the total unconditional dispersion can be broken down into the components explained by the

model and unexplained by our model. That is SST = SSres + SSreg, where SSreg is the regression sum

of squares defined
∑

i(ŷi − ȳ)2.
We may show (verify this) that ESSres = (n− 2)σ2. An unbiased estimator σ̂2 for σ2 is SSres

n−2 .

Definition 37 (Residual Mean Square). The value SSres

n−2 is called the residual mean square and is an

unbiased estimator of σ2, the conditional variance of response at a given input. The value σ̂ =
√
MSres

shall be called the residual standard error, or equivalently, the standard error of regression. n−2 indicates

the degrees of freedom in residual sum of squares (SSres), attributed to the loss of freedom from estimating

β̂0, β̂1. The estimate σ̂ depends on SSres, and requires that model assumptions of independent errors and

constant variance be satisfied.

5.8.1.4 Assumptions of the Analysis of Model on Simple Linear Equations

1. The assumptions of the model also apply, for obvious reasons, as assumptions in the analysis of

model. That is, we assume uncorrelated errors with constant variance and mean zero.

2. Additionally, we assume that ϵi ∼ Φ(0, σ2). In fact, they are identical and independent normal

random variables, implying that (i) for each value/level of regressor variable, the sub-population

of responses follow normal distribution and (ii) each such sub-populations share constant variance

σ2.

5.8.1.5 Test of Significance on Regression Coefficients

We may perform hypothesis testing for the significance of regression coefficients, for instance under

settings as follows:

H0 : β1 = β10 H1 : β1 ̸= β10

with test statistic

Zo =
β̂1 − β10
sd(β̂1)

=
β̂1 − β10√

σ2

Sxx

∼ N(0, 1).

Since β̂1 is a linear combination of yi and yi ∼ N(β0 + β1xi, σ
2), β̂1 must follow normal distribution.

However, most often σ2 is unknown and we use the estimator σ̂2, using test statistic

t0 =
β̂1 − β10√

MSres

Sxx

∼ tn−1,

which rejects the null hypothesis in a two-sided test under conditions |to| > tn−2(α/2), where tn−2(α/2)

indicates the percentile point of a t-distribution of degrees of freedom (n−2) with α
2 right-tail probability.

It is obvious from the test statistic that SE(β̂1) =
√

MSres

Sxx
. For test of intercept, our equivalent (and

abbreviated) steps would follow H0 : β0 = β00 , SE(β̂0) =
√
MSres(

1
n + x̄2

Sxx
) with test statistic following

(n-2) degrees of freedom t-distributions. The H0 : β̂1 = 0 implies there is no linear relationship between

y and x supported by the data, and the rejection implies that x helps explain variability of the response.

5.8.1.6 Test of Significance on Regression Model and ANOVA Methods

We may test for the significance of the regression model by testing if any of the β coefficients are unlikely

to be zero. In the case of the simple linear model, this turns out to be equivalent to the t-test on
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regression coefficients, since we only have one. We re-iterate here in short: H0 : β1 = 0, t0 = β̂1−0

se(β̂1)
.

The more general method is known as the Analysis of Variance (ANOVA) method. In Equation 5.45 we

demonstrated that the sum of total squares may be decomposed into the sum of squared residuals and

the regression/model sum of squares. Re-iterating:

SST =
∑
i

(yi − ȳ)2 =
∑
i

(ŷi − ȳi)2 +
∑
i

(yi − ŷi)2 = SSreg + SSres.

Since SST has the constraint that
∑

i(yi − ȳ) = 0, it has a degree of freedom of (n − 1). SSres has

degrees of freedom (n− 2), and since SSreg = β̂1 · Sxy (verify this) is determined once β̂1 is decided, it

has degrees of freedom one. Both sides match.

To test the hypothesis H0 : β1 = 0, we arrive at the following conclusions, conditional on null:

SSres

σ2
= (n− 2)

MSres

σ2
∼ χ2

n−2 (5.52)

SSreg

σ2
= χ2

1 (5.53)

SSres ⊥ SSreg. (5.54)

Under H0, this amounts to the test statistic

F0 =
SSreg/1

SSres/(n− 2)
∼ F1,(n−2),

rejecting the null hypothesis when F0 > F1,(n−2)(α). We often call the terms SSreg/1 = MSreg the

regression mean square and SSres/(n−2) =MSres the residual mean square. It can be shown the t-test

and F-test in the simple linear model are identical, since

t0 =
β̂1√

MSres/Sxx

t20 =
β̂2
1Sxx

MSres
=

β̂1Sxy

MSres
= F0.

The ANOVA tables may be generated in code using the following:

from statsmodels.formula.api import ols

model = ols(’y ~ x’, data=data).fit()

anova = statsmodels.stats.anova_lm(model, typ=2)

5.8.1.7 Confidence Intervals on Parameters and Variance Estimates

Assuming the same assumptions for the hypothesis (see Section 5.8.1.4) are satisfied, we may derive

confidence intervals on the β coefficients. Assuming the IID errors, the sampling distribution of βi, i ∈
{0, 1} = β̂i−βi

SE(β̂i)
∼ tn−2. The discussion on the standard errors of these estimates were employed in

Section 5.8.1.5, and their 100(1−α)% confidence intervals are constructed βi ∈
[
β̂i ± tn−2(

α
2 ) · SE(β̂i)

]
.

The confidence interval for σ2 corresponds to the interval
[
(n−2)MSres

χ2
n−2(

α
2 )

, (n−2)MSres

χ2
n−2(1−

α
2 )

]
.
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5.8.1.8 Confidence Intervals and Prediction Intervals on Response

Confidence Intervals

The regression function E(Y |X) gives point estimates for the conditional mean on response, given inputs

regressor variables. The point estimator for E(y|x0) = ˆE(y|x0) = µ̂y|x0
= β̂0 + β̂1x0 is an unbiased

estimator, and we can derive its variance. Recall that ȳ = β̂0 + β̂1x̄, then β̂0 = ȳ − β̂1x̄ and

Var(µ̂y|x0
) = Var(β̂0 + β̂1x0) = Var(ȳ + β̂1(x0 − x̄)) =

σ2

n
+ (x0 − x̄)2Var(β̂1) =

σ2

n
+ (x0 − x̄)2

σ2

Sxx
.

We therefore arrive at a confidence interval for conditional mean responses, with the following test

statistic:

µ̂y|x0
− E(y|x0)√

MSres ·
(

1
n + (x0−x̄)2

Sxx

) ∼ tn−2 (5.55)

and confidence intervals at 100(1− α)%:

µ̂y|x0
± tn−2,α2

√
MSres

(
1

n
+

(x0 − x̄)2
Sxx

)
(5.56)

which has minimal interval width at x0 = x̄ and widens with |x0 − x̄|. The standard error in the

computation takes into account the sampling error. We interpret that if we keep repeating the sampling

N times, then approximately (1 − α)% of the N confidence intervals constructed contain the true sub-

mean.

Prediction Intervals

Another application is the prediction of a new observation y given some specified x = x0. The point

estimate for this response is the same as the point estimate for the conditional mean response. In this

part we are interested in making statistical conclusions about ŷ0 instead of ˆE(y|x0). Consider the random
variable ψ = y0−ŷ0, which takes normal distribution Φ(0,Var(ψ)) and Var(ψ) = Var(y0−ŷ0) = Var(y0)+

Var(ŷ0) − 2Cov(y0, ŷ0) = σ2 + σ2
[
1
n + (x0−x̄)2

Sxx

]
= σ2

[
1 + 1

n + (x0−x̄)2

Sxx

]
, since future observations are

necessary independent of ŷ0. This results in the prediction interval

ŷ0 ± tn−2,α2

√
MSres

(
1 +

1

n
+

(x0 − x̄)2
Sxx

)
, (5.57)

which takes into account both the sampling error but also the variability of individuals around the

predicted conditional mean. It follows that the prediction interval (also a confidence interval, technically)

is a superset of the confidence interval relating to the conditional mean.

5.8.1.9 No Intercept Models

The no-intercept model specified y = β1x + ϵ can be specified where the origin intersection shall be

included as part of the problem specification. The estimators take different forms, although the principle

is the same. We have S(β1) =
∑

i(yi−β1xi)2, least-squares equation β̂1
∑

i x
2
i =

∑
yixi, giving unbiased

estimator

β̂1 =

∑
i yixi∑
i x

2
i

and fitted regression model ŷ = β̂1x. We have an estimator σ̂2 for conditional variance σ̂2 = MSres =∑
i(yi−ŷi)

2

n−1 =
(
∑

i y
2
i )−β̂1

∑
i yixi

n−1 .
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5.8.1.10 Coefficient of Determination, R2

The quantity R2 =
SSreg

SST
= 1 − SSres

SST
is known as the coefficient of determination, measuring the

proportion of variability in response explained by the regressors and our model. We have 0 ≤ SSres ≤
SST =⇒ R2 ∈ [0, 1] - but note that adding more terms monotonically increases the coefficient of

determination. This does not indicate the appropriateness or complexity of our model!

5.8.1.11 Maximum Likelihood Estimators vs Simple Least Squares

It can be shown that the method of least squares in parameter estimation is identical when errors

are assumed normal. Referring to the maximum likelihood method (see Definition 10), we have yi ∼
N(β0 + β1xi, σ

2) when errors are assumed IID N(0, σ2). Using the Gaussian log-likelihood function in

Equation (3.79):

L(θ) = −N
2
log(2π)−N log σ − 1

2σ2

N∑
i=1

(yi − fθ(xi))2 (5.58)

= −N
2
log(2π)−N log σ − 1

2σ2

N∑
i=1

(yi − β0 − β1xi)2 , (5.59)

which by taking derivatives results in the linear equations

δ logL

δβ0
=

1

σ̃2

∑
i

(
yi − β̃0 − β̃1xi

)
!
= 0 (5.60)

δ logL

δβ1
=

1

σ̃2

∑
i

(
yi − β̃0 − β̃1xi

)
xi

!
= 0 (5.61)

δ logL

δσ2
= − n

2σ̃2
+

1

2σ̃4

∑
i

(
yi − β̃0 − β̃1xi

)2 !
= 0 (5.62)

(5.63)

and solutions

β̃0 = ỹ − β̃1x̄ (5.64)

β̃1 =

∑
i yi(xi − x̄)∑
i(xi − x̄)2

(5.65)

σ̃2 =

∑
i(yi − β̃0 − β̃1xi)2

n
(5.66)

which give unbiased estimators of β0, β1 and biased estimator of σ. The relationship betweeen the least

squares estimator and MLE estimator follows the equation

σ̃2 =

[
n− 2

n

]
σ̂2,

and we see that the bias is small when n large. In general, the MLE estimators have better statistical

properties than the least-squares estimators, exhibiting consistency (see 9), asymptotic efficiency (see

12) and sufficiency (see 14). The downside of MLE is that it requires distributional assumptions about

the errors - that they are IID ∼ Φ(0, σ2).
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5.8.2 Multiple Least Squares

We may generalize the simple least squares model to multiple regressors, say k of them. Then our

population regression model gives

y = β0 +

(
k∑
i

βixi

)
+ ϵ βi, i ∈ [k].

The βi, i ∈ [k] are known as regression coefficients and reflect the expected change in response given unit

change in corresponding regressor, ceteris paribus. We note that ‘linearity’ is in coefficients, and the

model may take general forms such as higher order polynomials.

5.8.2.1 Interaction Effects

The regressors may contain interaction effects, which are defined as models that contain a function on

two ‘atomic’ regressors, which should already be included in the model. An example of such formulaic

relationships could take form y = β0 + β1x1 + β2x2 + β3x1x2 + ϵ, and we shall note that in this model

the level of change expected in y given unit change in x1 depends on the level of x2! Again, here we have

a non-linear surface generated by the regression equation, but we maintain linearity in the regression

coefficients and all conclusions apply.

5.8.2.2 Assumptions and Model Notations

Let n denote sample size as usual, and k take number of regressors. yi, i ∈ [n] is the i-th response, with

xij taking the i-th observation of the regressor xj .

We assume that E(ϵ) = 0,Var(ϵ) = σ2 - particularly that errors are centered at zero and have constant

variance. The sample regression model takes form yi = β0 +
∑k

j βjxij + ϵi, i ∈ [n].

5.8.2.3 Model Fitting

Taking least squares function
∑

i ϵ
2
i =

∑n
i (yi−β0−

∑k
j=1 βjxij)

2 and computing minima, we obtain the

linear equations

δS

δβ0
= −2

n∑
i=1

(yi − β̂0 −
k∑

j=1

β̂jxij)
!
= 0. (5.67)

δS

δβj∈[k]
= −2

n∑
i=1

(yi − β̂0 −
k∑

j=1

β̂jxij)xij
!
= 0. (5.68)

resulting in p = k+1 normal equations. Encoding the response vector in y ∈ Rn·1, regressors in X ∈ Rn·p

and β ∈ Rp·1, ϵ ∈ Rn·1, we may rewrite the sample regression model in matrix form y = Xβ + ϵ. Note

that the matrix X is the matrix of 1’s in the leftmost column and n rows of regressor data row-stacked.

We can equivalently express

S(β) =
∑
i

ϵ2i = ϵT ϵ = (y −Xβ)T(y −Xβ) (5.69)

= (yT − βTXT)(y −Xβ) (5.70)

= yTy − yTXβ − βTXTy + βTXTXβ (5.71)

= yTy + βTXTXβ − 2βTXTy (5.72)
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where in the last step we use the fact that transpose on scalars are identity transforms. By matrix

calculus (see Section 2.1) we arrive at

δS

δβ
= (XTXβ)T + (βTXTX)− 2(XTy)T = 2(βTXTX)− 2yTX, (5.73)

giving solutions XTXβ = XTy and regression coefficient

β̂ = (XTX)−1XTy (5.74)

. This gives solution if ∃(XTX)−1. This exists if the regressors (columns) are linearly independent and

our fitted regression model is written ŷ = xβ̂, where x is row vector of [1, x1, x2 · · ·xk]. Substituting

regression coefficient estimates (Equation 5.74), we obtain

ŷ = Xβ̂ = X(XTX)−1XTy = Hy (5.75)

where

Definition 38 (Hat Matrix). H = X(XTX)−1XT ∈ Rn,n is known as the hat matrix, for putting a

’hat’ on the response vector.

Corollary 7 (Residuals in Terms of Hat Matrix). Defining the residual terms ei = yi−ŷi, the n residuals

may be written in matrix form:

e = y − ŷ = y −Xβ̂ = y −Hy = (1−H)y

Note that the hat matrix H is symmetric and idempotent (that is HH = H), and is also often called

the projection matrix (projections have the property P 2 = P ). The matrix (1−H) is also symmetric

and idempotent.

5.8.2.4 Model Properties and Variance of Estimates

Note that

Eβ̂ = E
[
(XTX)−1XTy

]
(5.76)

= E
[
(XTX)−1XT(Xβ + ϵ)

]
(5.77)

= E
[
(XTX)−1XTXβ + (XTX)−1XTϵ)

]
(5.78)

= E
[
1β + (XTX)−1XTϵ)

]
(5.79)

= β (5.80)

where the last two steps used the assumption of uncorrelated errors to arrive at unbiased regression

coefficient estimates. Furthermore, we have

Cov(β̂) = E
[
(β̂ − Eβ̂)(β̂ − Eβ̂)T

]
, (5.81)

which is a positive and symmetric semi-definite matrix in Rp,p. The diagonals are the variance of the

coefficient estimates. We have

Cov(β̂) = Cov((XTX)−1XTy) (5.82)

=
(
(XTX)−1XT

)
Cov(y)

(
(XTX)−1XT

)T
(5.83)

= σ2
(
(XTX)−1XT

) (
(XTX)−1XT

)T
(5.84)

= σ2(XTX)−1XTX(XTX)−1 (5.85)

= σ2
1(XTX)−1 (5.86)

= σ2(XTX)−1 (5.87)

55



Writing C = (XTX)−1, and the Cov(β̂i, β̂j) = σ2Cij . Similar to the simple least squares approach, in

the estimation of p parameters we arrive at SSres of (n − p) degrees of freedom. As before, we obtain

the definition

Definition 39 (Residual Mean Square). The residual mean square is defined

MSres =
SSres

n− p
(5.88)

is unbiased estimator of σ2.

which is model dependent.

5.8.2.5 Assumptions for Analysis of Multiple Least Squares Regression

In addition to the assumptions specified for the model in Section (5.8.2.2), we need to assume here that

the random errors

ϵi
IID∼ Φ(0, σ2)

5.8.2.6 Significance Tests for Regression Coefficients by t-tests and Partial Sum of Squares

Method

We may test separately the contribution of a particular regressor in explaining the variability of the

response, or any subset of them.

T-Test

To test the significance of any individual regression coefficient βj we perform test (abbreviated) H0 :

βj = 0, t0 =
β̂j√
σ̂2Cjj

∼ tn−p, where Cjj is the j-th diagonal of (XTX)−1. This test is called the

partial/marginal test of significance of β̂j given all other regressors already present in the model.

Partial/Extra Sum-of-Squares Method

To determine the contribution to SSreg of a particular set of regressors given other regressors already in

the model, consider the following:

Definition 40 (Partial Sum-of-Squares Method). Consider again the population regression model written

y = Xβ + ϵ where the β is re-arranged to form the block matrix

β = [β1β2]
T
,

where β1 ∈ Rp−r,1 and β2 ∈ Rr,1 for r ≤ p partitions the regression coefficients of interest. Then we can

rewrite such that y = X1β1 +X2β2 + ϵ and we are interested in H0 : β2 = 0 vs H1 : β2 ̸= 0. Now recall

that in the full model we have β̂ = (XTX)−1XTy, and we define their regression sum of squares SSreg(β).

Under the reduced model of the null hypothesis we are left with the regression equation y = X1β1 + ϵ,

and we can write their regression coefficient estimates as β̂1 = (XT
1 X1)

−1XT
1 y with regression sum of

squares SSreg(β1). Then we define the partial sum of squares of β2 to be

SSreg(β2|β1) = SSreg(β)− SSreg(β1),

and this has the number of degrees of freedom r. Note that SSreg(β2|β1) ⊥ MSres and for the null

hypothesis H0 : β2 = 0 we construct the test statistic

F0 =
SSreg(β2|β1)/r

MSres
∼ Fr,n−p

under the null hypothesis, which rejects the null hypothesis if it turns out that F0 > Fr,n−p(α), the

implication of which states that ∃j ∈ [k − r + 1, k] s.t xj is a statistically significant regressor.
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Note that the result of the partial sum of squares in the case r = 1 yields the same conclusion and

p-values as would a t-test. Also, if the columns in X1 are orthogonal to the columns in X2, then we

must have SSreg(β2) = SSreg(β2|β1). When we do significance tests and decide to remove a variable, in

general the regression coefficients of the refitted model are not the same. In the special case of orthogonal

sets, no refitting is required.

5.8.2.7 Confidence Interval for Regression Coefficient Estimates

Recall in Section 5.82, we demonstrated that Cov(β̂) = σ2(XTX)−1. Furthermore, since we know that

β̂ is just a linear combination of the observations, and that we have the assumptions that ϵi
IID∼ Φ(0, σ2)

(and therefore that yi ∼ Φ(β0 +
∑

j βjxij , σ
2)), we can then conclude

β̂ ∼ Φ(β, σ2(XTX)−1) (5.89)

where the marginal distribution of a regression coefficient β̂j∈[p] is ∼ Φ(βj , σ
2Cjj) where Cjj is j-th

diagonal of (XTX)−1. The (abbreviated) hypothesis test would have test statistic of form

β̂j − βj√
σ̂2Cjj

∼ tn−p, j ∈ [k]

and confidence interval

β̂j ± tn−p(
α

2
)
√
σ̂2Cjj

with SE(β̂j) =
√
σ̂2Cjj .

Joint Confidence Intervals on Regression Coefficients If we have a least squares model with

predictions on (β̂0, β̂1), we each have a 100(1−α)% confidence interval on the coefficients. Say we want a

95% confidence interval on both parameters, and assuming independence (they are not), then their ‘joint

correctness’ is only 0.952. We need to define their joint distributions. It can be shown that (verify):

F0 =
(β̂T − β)TXTX(β̂T − β)

pMSres
∼ Fp,n−p (5.90)

which implies P{F0 ≤ Fp,n−p(α)} = 1 − α. Constructing a 100(1 − α)% joint confidence region for all

parameters in β we obtain the values for which it results in test statistic F0 ≤ Fp,n−p(α).

Bonferroni Correction: we may also choose the family-wise error rate such that we instead use

confidence intervals:

β̂j ± t α
2p ,n−p · SE(β̂j), j ∈ [k]. (5.91)

5.8.2.8 Confidence Interval and Prediction Intervals of Estimates on Mean Response and

Response Variables

We may want to make certain point estimates and give statistical comments about the relevancy of our

estimates on conditional mean response, or just response.

Confidence for Prediction of Conditional Mean Response For some point x0 we want to construct

(conditional) mean response intervals. Recall from Equation 5.82 Cov(β̂) = σ2(XTX)−1. Further

suppose we select the estimator ŷ0 = xT
0 β̂, which turns out to be an unbiased estimator of E(y|X = x0).

The variance of shall be computed

Var(ŷ0) = Var(xT0 β̂) (5.92)

= xT0 Cov(β̂)x0 (5.93)

= σ2xT0 (X
TX)−1x0. (5.94)
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We can therefore define the confidence interval for mean response given:

ŷ0 + tn−p(
α

2
)
√
σ̂2xT

0 (X
TX)−1x0 (5.95)

Prediction Interval for Prediction of Response

For a particular point x0, we are interested in making the 100(1−α)% prediction interval for response

given

ŷ0 ± tn−p(
α

2
)
√
σ̂2(1 + xT

0 (X
TX)−1x0). (5.96)

5.8.2.9 Significance Tests for Regression Model

To test if there is a linear relationship between our response variable and any regressors (if our model is

significant at all), we may construct hypothesis:

H0 : ∀j ∈ [k], βj = 0 H1 : ∃j ∈ [k] s.t βj ̸= 0.

Recall that we have the decomposition SST = SSres + SSreg. We construct the test-statistic:

F0 =
SSreg/k

SSres/(n− k − 1)
=
MSreg

MSres
∼ Fk,n−p (5.97)

In particular, we have (verify this):

SSreg = β̂TXT y − (
∑
yi)

2

n
(5.98)

SSres = yT y − β̂TXT y (5.99)

SST = yT y − (
∑
yi)

2

n
(5.100)

and the random variables follow the distribution (assuming null is true):
SSreg

σ2 ∼ χ2
k,

SSres

σ2 ∼ χ2
n−k−1

and SSreg ⊥ SSres. We reject the null hypothesis when F0 > Fk,n−p(α).

5.8.2.10 Coefficients of Determination and Adjustments

Similar to the simple least squares coefficient of determination as in Section 5.8.1.10, we have R2 =
SSreg

SST
.

We define them formally here.

Definition 41 (Coefficient of Determination). The ‘R2 value’, also known as the coefficient of determi-

nation or proportion of variation explained by regressors, is defined

R2 =
SSreg

SST

To penalize model complexity, we have the adjusted coefficient of determination, defined:

Definition 42 (Adjusted Coefficient of Determination).

R2
adj = 1− SSres/(n− p)

SST /(n− 1)
(5.101)
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5.8.2.11 Interpretation of Model and Coefficients

In the case of a vanilla model with no interaction effects, the interpretation is obvious in that regression

coefficients are mean change in response per unit regressor change, ceteris paribus. However, we can

have a slightly more nuanced discussion. We can see the coefficients as the contribution of xj to response

y after BOTH y, xj have been linearly adjusted for all other regressors. In particular, consider model

y = β0 + β1x1 + β2x2 + ϵ, and suppose we want to interpret the effect of x2 on y. Then, let the steps

follow:

Model 1 : y ∼ x1 : ŷ = α̂0 + α̂1x1, with residual y − ŷ = ey·x1
(5.102)

Model 2 : x2 ∼ x1 : x̂2 = γ̂0 + γ̂1x1, with residual x2 − x̂2 = ex2·x1
(5.103)

Model 3 : ey·x1
∼ ex2·x1

: êy·x1
= λ̂0 + λ̂1ex2·x1

, with residual ey·x1
− êy·x1

(5.104)

From Model 2 it follows that x2 = γ0 + γ1x1 + ex2·x1 and we can rewrite

y = β0 + β1x1 + β2(γ0 + γ1x1 + ex2·x1
) + ϵ (5.105)

= (β0 + β2γ0) + (β1 + β2γ1)x1 + (β2ex2·x1
+ ϵ) (5.106)

Relating to Model 1 we can map α0 = β0 + β2γ0, α1 = β1 + β2γ1, ey·x1 = β2ex2·x1 + ϵ. We may perform

a similar exercise to obtain ey·x2 = β1ex1·x2 + ϵ. The general relationship for a multiple linear regression

model can be summarized:

ey·x1x2···xj−1xj+1···xk
= βjexj ·x1x2···xj−1xj+1···xk

+ ϵ

where βj is the contribution of xj to y after both y, xj have been linearly adjusted for all other regressors.

5.8.2.12 Regressor Variable Hull and Extrapolation of the Input Space

Consider that in the case of higher dimensions, an unseen input vector can be elementwise in the range

of the regressors but lie outside the region of the original data. There is hence a hidden extrapolation.

Definition 43 (Regressor Variable Hull). Consider n data points and training data (xi)i∈[n], where xi is

k-dimensional vector of input. The smallest convex set containing all of these data points shall be called

the regressor variable hull. The set of points x satisfying

xT(XTX)−1x ≤ max
i

diag(H) = hmax

where H is the hat matrix (see Definition 38) X(XTX)−1XT forming an ellipsoid enclosing all points

inside the regressor variable hull.

For new input point of p-vector xT0 = [1, (x0j)j∈[k]], we say that using the model to fit x0 is extrapo-

lation if xT
0 (X

TX)−1x0 > hmax.

5.8.2.13 Standardization of Model

In general, the units of β̂j are in terms of the change in units of y per change in units of xj . To make

the model dimensionless, we can do standardization to yield standardized regression coefficients.

Unit Normal Scaling: to conduct unit scaling for regressors we take zij =
xij−x̄

sj
, i ∈ [n], j ∈ [k]

where x̄j =
1
n

∑
i xij and s2j = 1

n−1

∑
i(xij − x̄j)2. For regressors, we can also perform y∗i = yi−ȳ

sy
. Using
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the new scaled response and regressors, we can construct

y∗ =

k∑
j=1

bjzj ,

which after standardization has no intercept!

Unit Length Scaling: for unit length scaling of regressors we form wij =
xij−x̄j√

Sjj

, i ∈ [n], j ∈ [k]

where Sjj is the corrected sum of squares for xj with definition

Definition 44 (Corrected Sum of Squares).

Sjj =

n∑
i

(xij − x̄j)2. (5.107)

The name follows since each new regressor w̄j has mean zero and length
√∑n

i (wij − w̄j)2 = 1. Using

unit length scaling for response y0i = yi−ȳ√
SST

and fitting the model

ŷ0 =

k∑
j

bjwj ,

we arrive at some interesting properties. In particular, the matrix WTW = ρ(X), the correlation matrix

and ZTZ = (n− 1)WTW - that is the estimates of regression coefficients from norm scaling and length

scaling are the same.

5.8.2.14 Indicator Functions

We may also encode qualitative/categorical variables of k levels by a k−1 indicator function set - in fact

any binary function that maps to discrete values shall suffice, but indicators are most used. Here the

assumption that variance is constant in all levels of category is used, instead of across continuous axis.

In the vanilla model we can easily see that the indicator function indicate change of intercept (see by

substitution of {0, 1}), with the interpretation as difference of means. In the case of interaction terms

with continuous variables this can also mean the change in both slope and intercept, which we may also

verify simply by specifying such a model and substituting our own values! Note that interaction term

requires that the atomic regressor is already included in the model, and we may test for the significance

of the categorical variable using the partial sum of squares (see Section 40) method. Suppose the model

follows y = β0+β1x1+β2x2+β3x1x2+ ϵ where x2 is the indicator function affecting intercept and slope

of x1, then we perform the (abbreviated) test H0 : β2 = β3 = 0 with test statistic

F0 =
SSreg(β2, β3|β1, β0)/2

MSres
∼ F2,n−4.

Note that the ‘partial sum’ comes from the fact that we may do something like SSreg(β2, β3|β1, β0) =
SSreg(β2|β1, β0) + SSreg(β3|β2, β1, β0).

5.8.3 Adequacy of The Least Squares Method

We made assumptions in the phase of model fitting and during the phase of model analysis and interpre-

tation (see Section 5.8.1.4 and Section 5.8.2.2). Obviously, ex-ante we made the assumption on the form

of the model, in that it is parametric and the relationship between response and regressors be approxi-

mately linear, known as the linearity assumption. We also made assumptions about the errors - mostly
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that the errors ϵ has expectation zero and constant variance, known as the constant variance/homo-

geneity assumption. In the analysis, we further assumed they are ϵ
IID∼ Φ(0, σ2), which is our normality

assumption and independent error assumption.

A possible method would be the study of residuals, either graphically or in numerical forms. Types

of graphs include one-dimensional graphs (such as histograms, stem-and-leaf plots, dot plots, box plots

et cetera), two-dimensional graphs (such as the scatter plot). However, in the case of multiple linear

regression, even the pairwise correlation matrix (and therefore the scatter plot) may not indicate the

presence of linear relationships between regressors. Ideally, pairwise plot of regressors show little to

no correlation (linear patterns), but even then there may exist linear multivariate relationships that

involve more than two variables. These plots can be performed ex-ante. An ex-post analysis may also

be performed, after the model has been fit.

5.8.3.1 Residual Analysis

After fitting the model we may perform residual analysis of ei = ŷi − yi, i ∈ [n], which have zero mean

and variance approximated ∑
i(ei − ē)2

n− p
=

∑
i e

2
i

n− p
=
SSres

n− p
=MSres.

When n >> p then the dependence between residuals ei is weak, but otherwise they are not independent.

5.8.3.1.1 Leverage Values, Influential Values and the Variance of Residuals

Definition 45 (Leverage Values). Recall that we defined the hat matrix 38 X(XTX)−1XT and obtained

ŷ = Hy, and we can rewrite ŷi =
∑n

j hijyj, which shows that the response prediction is a weighted sum of

all observations. In particular we shall then call hii the leverage value for the i-th observation, indicating

the weight of yi in ŷi.

We also wrote the residuals to take e = (1−H)y. By substitution of y = Xβ + ϵ we obtain

e = (1−H)(Xβ + ϵ) (5.108)

= Xβ + ϵ−HXβ −Hϵ (5.109)

= Xβ + ϵ−X(XTX)−1XTXβ −Hϵ (5.110)

= Xβ + ϵ−Xβ −Hϵ (5.111)

= ϵ−Hϵ (5.112)

= (1−H)ϵ (5.113)

(5.114)

and using Var(ϵ) = σ2
1 and the fact that 1−H is idempotent symmetric,

Var(e) = Var((1−H)ϵ) = (1−H)Var(ϵ)(1−H)T = σ2(1−H) (5.115)

Finally we arrive at the results

Var(ϵi) = σ2(1− hii), Cov(ei, ej) = −σ2hij (5.116)

where in the covariance term we use the fact that identity matrices have zero non-diagonals.
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5.8.3.2 Standardization of Residuals

Following the variance study of residuals in Equations 5.116 we can form standardized residuals. In

particular we define:

Definition 46 (Standardized Residuals). Standardized residuals are residuals defined as

ei

σ
√
1− hii

, i ∈ [n] (5.117)

but again recall that our estimator of σ is
√
MSres. Another alternative is σ̂(i) where

σ̂2
(i) =

SSres(i)

n− k − 2
=

SSres(i)

n− p− 1
(5.118)

where SSres(i) is the sum squared residuals when model is fitted without the i-th observation. Then

both MSres, σ̂
2
(i) form unbiased estimator of σ2. Then we may estimate the standardized residuals by

substitution with the formulations:

Definition 47 (Internally Studentized Residuals). Internally Studentized Residuals are defined

ri −
ei√

MSres(1− hii)
, i ∈ [n]

and

Definition 48 (Externally Studentized Residuals). Externally Studentized Residuals are defined

r∗i −
ei√

σ̂(i)(1− hii)
, i ∈ [n]

which can be shown to be related via the monotonic (and hence similar) transformation r∗i = ri
√

n−p−1
n−p−r2i

.

5.8.3.3 Checking Normality Assumptions

We can also check for the normality assumptions on residuals using quantile plots such as the QQ plot

(see Section 4.3.1). Plotting against normal scores the ordered standardized residuals, we can look out

for the presence of tails / skewness, as well as large residuals representing potential outliers. Additionally,

a scatter plot of standardized residuals against either the response or any of the regressors should yield

no pattern. A funnel, cone or bow shape can indicate heteroscedasticity, curves and quadratic pattern

can indicate that the linearity assumption is violated and so on. Additionally, under the normality

assumption we should expect (most) standardized residuals to fall within an absolute value of three. For

instance, a ‘double bow’ (imagine the shape of one’s lips) often occurs when the response is a proportion

between zero and one, since the variance of binomial random variable near 0.5 is greater than when it is

near the extreme values of proportion (zero, one). Note that in the simple regression, scatter plot ri ∼ X
is visually identical to ri ∼ ŷ.

5.8.3.4 Note on Time Series Data

Additionally, if the data is serially sampled, it might be worth looking at the standardized residuals

plot against the time order. Ideally, we obtain the ‘no pattern’ pattern, the violation of which might

suggest we have variance as function of time σ(t) or even autocorrelation ρ(ϵt, ϵt−1) ̸= 0 which is a serious

violation of the independence assumption of errors.
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5.8.3.5 Outliers and Influential Data

Residuals that are considerably (absolutely) larger than the others may indicate potential outliers in the

output space. QQ plots (see Section 4.3.1), scatter plots and normality tests are good ways of identifying

outliers. Although outliers can be ‘bad’ and corrected/removed in the case of sampling faults, sometimes

it just reflects a black swan event that is perfectly plausible - in this case deleting the data point can

lead to dangerous conclusions and false sense of model accuracy. The removal of (bad) outliers can affect

regression coefficient estimates, residual sum of squares, coefficients of determination and error variances.

This in turn affects interval estimates and so on.

Recalling the idempotent property, again we have Var(ŷ) = Var(Hy) = HVar(y) = Hσ2. The hat

matrix determines the covariance of ŷ and e, the fitted value and error matrices. hij is the amount

of leverage exerted by the j-th observation yj on i-th fitted value ŷi. Recall from Definition 45 that

hii = xi(X
TX)−1xi is a standardized measure of the distance of the i-th observation from the center of

the x space. Large values of hii indicate potentially influential points since they are different from the

other points in the input space! We have
∑
diag(H) = rank(H) = p, therefore the average size of a hat

diagonal should be p
n . We can say that for any hat diagonal exceeding 2p

n , the point is a leverage point

(assuming 2p
n < 1). Points with large residuals and large diagonals are likely to be influential points,

in that they affect model summary statistics and regression coefficient estimates to a more significant

degree.

To measure the influence of data points, we can use the squared distance between the least square

estimates based on all n data and without the data point. Letting the estimate for regression coefficients

excluding point i be β̂(i), then define

Definition 49 (Cook’s Distance). Cook’s Distance is defined

Di = (M, c) =
(β̂(i) − β̂)TM(β̂(i) − β̂)

c
i ∈ [n] (5.119)

where M, c usually takes form XTX, pMSres respectively. With these forms of M, c, then Di =
r2i
p

hii

1−hii

where ri is the internally studentized residuals defined as in Definition 47.

Points with large Cook’s Distance are said to have considerable influence. We can interpret the value

as follows: if Di = Fp,n−p(0.5) ≈ 1, then deleting the point i would move β̂(i) to the boundary of an

approximately 50% confidence region for β. Therefore, the cutoff Di > 1 is often used.

Other useful measure of influence are DFFITS and DFBETAS. While invalid data may be removed,

if there is no justification for removal we shall not do so. A common method called the ‘robust estimation

technique’ would be to down-weight the influence of the point in the model estimates.

5.8.3.6 Lack of Fit

A lack-of-fit test requires that for a single level of response, we have replicate observations on response.

Suppose in the simple linear model we have y ∼ x and in the training data we have x = {x1, x2, · · · , xm}
discrete, m ≤ n levels. Now assume that for each level i ∈ [m] that we have ni observations, and denote

yij to be observation j for i-th level regressor. Note that we have n =
∑

i ni. The ij-th residual is

yij − ŷi = (yij − ȳi) + (ȳi − ŷi). Squaring both sides and summing over all inputs we obtain

m∑
i=1

ni∑
j=1

(yij − ŷi)2︸ ︷︷ ︸
SSres

=

m∑
i=1

ni∑
j=1

(yij − ȳi)2︸ ︷︷ ︸
SSPE

+

m∑
i=1

ni(ȳi − ŷi)2︸ ︷︷ ︸
SSLOF

(5.120)
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since the cross terms evaluate to zero. We decomposed the sum of squared residuals into two components,

namely the pure error and the lack of fit term. Compare this to the sum of squares in the general ANOVA

problem discussed in Definition 54.

Definition 50 (Lack of Fit Sum of Squares). We define the lack of fit sum of squares to be

SSLOF =

m∑
i=1

ni(ȳi − ŷi)2

with the terminologies as specified prior, and is the weighted sum of squared deviations of fitted and mean

response values. If the fitted values are close to the mean, then the lack of fit value is small and strongly

indicates a linear relationship of in the regression function.

The lack of fit test statistic follows distribution

F0 =
SSLOF /(m− 2)

SSPE/(n−m)
=
MSLOF

MSPE
∼ Fm−2,n−m (5.121)

under the null hypothesis of H0 : true regression function is linear .In a simple model, the H0 : β1 ̸= 0 is

the equivalency of ‘model is linear’ and we reject the null hypothesis if F0 > Fm−2,n−m(α). Unfortunately,

this is not very useful in many cases, especially in multiple regression models - repeat observations do

not occur often in higher dimensionality.

5.8.3.7 Multicollinearity

When there is no linear relationship between regressor variables, we say that they are orthogonal. In most

applications however, this is not the case. In the discussions that follow, we will assume all regressors

have been centered and unit scaled. In many cases the regressors can be linearly dependent, affecting the

inferences based on the regression model. The presence of near-linear dependencies between regressors

is called the multicollinearity problem, and affects regression coefficient estimates. Define Xj to be the

j-th column of input variable matrix X. Then if there exists nonzero solutions to t where
∑

j tj ·Xj = 0

then (XTX)−1 does not exist. Multicollinearity can be introduced in different stages of the model

building process, such as (i) data collection, (ii) model/population constraints, (iii) model specifications

and (iv) over-defined modelling. If the sampling method is not a pure random sampling and involves

the sampling of a sub-sample of the entire sample space - such that there exists correlation between

variables - we can run into multicollinearity issues. In the case of problem specific constraints, we might

have a situation where we are modelling y ∼ x1 + x2 and it turns out x1 and x2 are related intrinsically

(think income and housing size, et cetera). Model specifications such as higher order polynomial term

might introduce multicollinearity, especially so when the range of a regressor variable is small. Over-

defined models are situations in which p > n. Recall that the variance of regression estimates were given

Cov(β̂) = σ2(XTX)−1 (see Section 5.82), then the ℓ2 error of our regression estimates can be computed

as the squared distance: L2
1 = (β̂ − β)T (β̂ − β) and we have

EL2
1 = E[(β̂ − β)T (β̂ − β)] =

j∑
j=1

E(β̂j − βj)2 =

k∑
j=1

Var(β̂j) = σ2trace(XTX)−1 (5.122)

where the trace is the sum diagonals. When multicollinearity exists, some of the eigenvalues of XTX will

turn out to be small. Letting λj denote the j-th eigenvalue of XTX, then EL2
1 = σ2trace(XTX)−1 =

σ2
∑k

j=1 λ
−1
j . At least one of the eigenvalues being involved in a multicollinear relationship inflates the

1
λj

and the expected error loss in estimation of β̂ becomes large. Since Var(β̂j) = σ2Cjj , j ∈ [k], we can
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show that if X is unit-length scaled (verify this) then ρ(X) = XTX. We can show that j-th diagonal

of [ρ(X)]−1 = 1
1−R2

j
where R2

j is the coefficient of determination from regression of xj ∼ {xi∈[k]∧j ̸=i}.
We can see directly from this that strong multicollinearity effects between regressors inflate both the

variance and covariance of our least squares estimates! Often, when X is unit scaled we just call XTX

as the correlation matrix of X and call it the correlation form of XTX. Multicollinearity decreases

the generalisability of the model - although it fits well to training data, the poor regression coefficient

estimates makes the model poor for prediction for inputs outside the observed input space.

5.8.3.7.1 Detection of multicollinearity - Plots, Variance Inflation Factors and Eigensys-

tem Analysis :

Correlation Plots A simple (but non-sure) way of identifying potentially multicollinear variables is to

look at the off-diagonal elements in ρ(X). However, there are many instances when pairwise correlation

do not reflect the presence of multicollinearity, since near-linear dependence involving more than two

regressors are not reflected.

Variance Inflation Factors Recall that the diagonals of ρ(X)−1 correlation matrix can be useful in

detecting multicollinearity. In particular, we have the values:

1

1−R2
j

, j ∈ [k]. (5.123)

Since the variance of the j-th regressor equals σ2Cjj and Cjj increases with 1
1−R2

j
, then we can view this

value as the factor by which the variance of β̂j increases due to non-linear dependence among regressors.

Definition 51 (Variance Inflation Factors). The variance inflation factor for the j-th regressor is the

value

V IFj =
1

1−R2
j

, (5.124)

for which the presence of a large value indicates multicollinearity. 1

Note that scaling data can help decrease the variance inflation factors and improve the fit.

Eigensystem Analysis Since the eigenvalues/characteristic values of a square matrix A ∈ Rp,p are

the k roots to the system ∥A − λ1∥ = 0, then the eigenvalues of ρ(X), that is {λi, i ∈ [k]}, can be

used to measure collinearity in data. Small eigenvalues indicate collinearity issues. Let the condition

number of ρ(X) be κ = λmax

λmin
, then if κ > 100 we say that collinearity issues exist. This does not tell

us however, the number of regressors involved in the collinearity relationship. The number of condition

indices, κj =
λmax

λj
, j ∈ [k] gives a measure of the number of such near-linear dependencies. The method

of eigensystem analysis can also be used to identify the nature of this near-linear dependence.

5.8.4 Correction of Inadequacies

5.8.4.1 Transformation of Response-Regressor

A violation of the linearity assumption may be detected via the analysis of standardized residuals or

in the lack of fit test, as we saw in Section 5.8.3. In these cases, the originally nonlinear function may

be transformably linear. For instance, consider the following linearizable, non-linear functions and their

linear transformations:

1A VIF value exceeding 5 or 10 can indicate that the associated coefficient estimates are poorly estimated. The VIFs

not only detect collinearity but suggest which regressors are involved in the collinear relationship.
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y ∼ x Transform y′ ∼ x′

y = β0x
β
1 y → log y, x→ logx y′ = log β0 + β1x

′

y = β0 exp{β1x} y → ln y y′ = lnβ0 + β1x

y = β0 + β1 log x x→ log x y′ = β0 + β1x
′

y = x
β0x−β1

y → 1
y , x→

1
x y′ = β0 − β1x′

When performing transformations, the problem domain needs to be taken into account. For instance,

two equally feasible transformations x → 1
x and adding a non-linear higher order term x2 may be

presented - then we should question if the quadratically U-shaped relationship between response and

regressor is an intuitively reasonable one.

We may also rely on analytical methods to specify appropriate transformations, such as the Box-Cox

method.

5.8.4.1.1 Box-Cox Method We may transform the response y to correct for non-normality and

heteroscedasticity, using the power transform yλ, and then estimating β, λ using maximum likelihood

methods (see Section 10). We use the transformation

y(λ) =


yλ − 1

λyỹλ−1
when λ ̸= 0

ỹ log y when λ = 0,

(5.125)

where ỹ = exp{ 1n
∑n

i log yi} represents geometric mean of observations. The regression coefficients are

obtained by fitting the model y(λ) = Xβ + ϵ using the least squares (see 5.74) method or the maximum

likelihood estimation method (see 10).

Note that when comparing between different λ transformations, we may not use SSres since each of

the computations are scaled differently. The MLE estimate corresponds to the λ value for which the

SSres from the fitted model is minimum. If λ = 0, then we choose log y as response, else our new response

variable is yλ.

5.8.4.1.2 Box-Tidwell Method Another transformation is on the regressor variables instead of

the response. Assuming that ϵ
IID∼ Φ(0, σ2) is at least approximately satisfied, then we may apply the

Box-Tidwell method as follows. For the simple model, consider transformation

ξ =

{
xα α ̸= 0

log x α = 0
(5.126)

and with least squares fit ŷ = β̂0 + β̂1x. Fit a new model with addition of regressor w = x log x, such

that we have ŷ = β̂′
0 + β̂′

1x + γ̂w and take α1 = γ̂

β̂1
+ 1. Repeat the procedures using a new regressor

x→ xα1 , and this converges rapidly to a satisfactory result of α.

Another method of correcting the inadequacies are to adjust weights of points such that they are

approximately equal in importance to the model fits. This is discussed in the section on the weighted

least squares method (see Section 5.8.5).

5.8.4.2 Ridge Regression

MSE(β̂′) = E(β̂′ − β)2 = Var(β̂′) +Bias(β̂′)2. (5.127)
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The measurement model relating to this decomposition is given in Equation 3.2. If we are able to increase

bias to smaller extent than the decrease in variance, our estimate has lower expected errors. From here

we refer to XTX in its correlation form.

Definition 52 (Ridge Estimator). Define the ridge estimator β̂R as solution to (XTX+λ1)β̂R = XT y,

therefore we have

β̂R = (XTX + λ1)−1XT y (5.128)

= (XTX + λ1)−1XTXβ̂ (5.129)

= Zλβ̂ (5.130)

where λ ∈ [0, 1] is called the biasing parameter.

Then we have (verify this)

MSE(β̂R) = Var(β̂R) +Bias(β̂R)
2 (5.131)

= σ2
k∑

j=1

λj
(λj + λ)2

+ λ2βT (XTX + λ1)−2β (5.132)

where each λj is the j-th eigenvalue of XTX. As the biasing parameter increases, the variance decreases

and bias increases. There exists λ ̸= 0 such that MSE(β̂R) < Var(β̂), provided β̂T β̂ is bounded. Note

that since (verify this)

SSres = (y −Xβ̂R)T (y −Xβ̂R) (5.133)

= (y −Xβ̂)T (y −Xβ̂) + (β̂R − β̂)TXTX(β̂R − β̂), (5.134)

where the first term is the SSres of the unbiased least squares, the ridge regression results in poorer fit

and lower coefficients of determination as a tradeoff to lower mean squared error of regression estimates.

The ridge trace is a useful plot to observe the elements of β̂R against the values of λ. In the case of

multicollinearity issues, the instability of regression coefficients can be observed from the ridge trace.

The ridge regression method is often a technique employed to deal with multicollinear effects.

5.8.4.3 Principal Component Regression

5.8.5 Weighted Least Squares

When faced with data with heteroscedastic variance, we can fit by weighted least squares. The residual

terms (yi − ŷi) are scaled by weight inversely proportional to Var(yi). Recall that in the simple least

squares 5.31 we took S(β0, β1) =
∑

i(yi − β0 − β1xi)2, and we replace this with the weighted sum of

squares objective function:

S(β0, β1) =
∑
i

wi(yi − β0 − β1xi)2 (5.135)

with normal equations

β̂0

n∑
i=1

wi + β̂1

n∑
i=1

wixi =

n∑
i=1

wiyi (5.136)

β̂0

n∑
i=1

wixi + β̂1

n∑
i=1

wix
2
i =

n∑
i=1

wiyixi (5.137)
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which by solving yields β̂0, β̂1 as regression coefficient estimates. The wi here are not variable - they

are set inversely proportional to their variance (such as wi =
1
σ2
i
) where the error i term is determined

variance σ2
i . These variances are unknown a priori but can be estimated and are to be discussed later.

Writing the weighted means x̄w =
∑

wixi∑
wi

and ȳw =
∑

wiyi∑
wi

, we obtain (verify this) regression estimates

β̂0 = ȳw − β̂1x̄w (5.138)

β̂1 =

∑
i wi(xi − x̄w)(yi − ȳw)∑

i wi(xi − x̄w)2
(5.139)

that yields unbiased estimates. The weighted mean squared residualsMS(w)Res is an unbiased estimator

of σ2. Interpretation of the models are the same as when weights are uniform. We may remove point i

by setting wi = 0. Additionally, outliers or influential points may be set wi < w̄ to down weight impact

on coefficient estimates relative to others. Since we need conditional variance σ2
i , this can be difficult to

obtain. Suppose we already know the relationship such that Var(y|x) = f(x) then we may encode it in a

functional form. However, in many cases the underlying distributions and relationships are not known -

and we may rely on methods such as estimation on the multiple (nearly) repeated values of the regressor.

Althought we ideally want multiple response values at each level of the regressor value, we often do not

have sufficient data. Instead, we bin the regressor axis and group them. Let this group formed from the

neighbourhood of xi have average x̄ and sample variance s2y. We may perform a least squares for sy ∼ x̄,
and substitute xi → x̄ to obtain an estimate of σ2

i .

5.8.6 Generalized Least Squares

In the generalized least squares we want to fit

y = Xβ + ϵ

with the weaker assumptions that Eϵ = 0,Var(ϵ) = σ2V . In the multiple least squares assumptions (see

Section 5.8.2.2) our assumption of constant and independent assumption corresponds to V = 1. When

V is diagonal matrix then our problem set is uncorrelated but non-constant variance, and in the general

case we have both correlated errors and non-constant variance.

We may no longer use the estimates β̂ = (XTX)−1XT y when V ̸= 1. What we want to do is then

perform transformation of the model into a new set of observations satisfying the ordinary least squares

assumptions and utilize that machinery. Let σ2V be represent matrix Cov(ϵ), then the generalized least

squares normal equations become (verify this):

(XTV−1X)β̂ = XTV−1y (5.140)

with solution

β̂ = (XTV−1X)−1XTV−1y, (5.141)

the generalized least square estimator of β. Note that in the special case where σ2V is diagonal matrix,

let W = V−1 and we derive the weighted least squares equation (verify this)

(XTWX)β̂ = XTWy (5.142)

with solution

β̂ = (XTWX)−1XTWy. (5.143)
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5.8.7 Variable Selection Methods

We discuss the tradeoff between model complexity and predictive power in this section. The basic

strategy can be modelled as follows: 1) fit a full model, 2) perform analysis and validity studies, 3)

determine statistical relevance and significance by tests, 4) edit model and repeat.

Assume a k regressor candidate problem with regressors xi, i ∈ [k] and response y. Then our model

is specified yi = β0 +
∑k

j=1 βjxij + ϵ, i ∈ [n]. Suppose r regressors should be deleted from the model,

then we can decompose Xq,Xr such that Xq is the q = k − r + 1 columns of intercept and significant

regressors, while the Xr are the deleted ones. We rewrite y = Xqβq +Xrβr + ϵ. Recall the full model

5.74 β̂∗ = (XTX)−1XT y where β̂∗ consists of β̂∗
q and β̂∗

r and

σ̂2
∗ =

yT y − β̂∗TXT y

n− k − 1
=
yT [1−X(XTX)−1X]y

n− k − 1
(5.144)

with fitted values ŷ∗i . The subset model takes form β̂q = (XT
q Xq)

−1XT
q y and

σ̂2 =
yT y − β̂T

q X
T
q y

n− q
=
yT [1−Xq(X

T
q Xq)

−1Xq]y

n− q
(5.145)

and fitted values ŷi. Then a question we may ask is with regards to the consequence of mis-specifying our

model by the r regressors. It turns out that (verify this) Eβ̂q = β + Aβr where A = (XT
q Xq)

−1XT
q Xr,

which results in a biased estimator unless βr is zero vector or the regressors are orthogonal to the retained

variables, in that XT
q Xr = 0. We also have Var(β̂q) = σ2(XT

q Xq)
−1,Var(β̂∗) = σ2(XTX)−1 by definition

and writing Var(β̂∗
q )−Var(β̂q) we obtain a matrix such that all variances of regression coefficients in the

full model are ≥ to variances of coefficients in the reduced model. Removal of unnecessary variables will

not increase the variance of remaining coefficients. We also have the MSE(β̂q) < MSE(β̂∗
q ), where the

subset model has smaller mean squared errors.

Note that in the full model, the σ̂2
∗ is unbiased estimator of σ2, while the σ̂2 from the subset model is a

biased upward estimate of σ2. When predicting response at point xT = (xTq , x
T
r ), the predicted response

from full model is ŷ∗ = xT β̂∗ with mean xTβ and prediction variance Var(ŷ∗) = σ2[1+xT (XTX)−1x], in

comparison to the predicted response of ŷ = xTq β̂q with mean Eŷ = xTq βq + xTq Aβr and mean of squared

error

MSE(ŷ) = σ2[1 + xTq (X
T
q Xq)

−1xq] + (xTq Aβr − xTr βr)2. (5.146)

Although (in general) we have a biased estimate of y, the variance of ŷ∗ from the full model is not less

that the variance of ŷ from the subset model.

We may show (verify this):

MSE(ŷ∗) = Var(ŷ∗) ≥MSE(ŷ) (5.147)

in the misspecification of the model. Hence, deleting variables improves the precision of the regression

estimates of the retained models, reduce variance of predicted response. If these deleted variables are

not significant then the bias-variance tradeoff is favourable and we earn lower mean squared errors.

5.8.7.1 Selection Criterion

Some of the metrics to select different models can be named as follows: i) the coefficient of (multiple)

determination (R2
q =

SSreg(q)
SST

= 1 − SSres(q)
SST

), adjusted coefficient of multiple determination (R2
adj =
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1− n−1
n−p (1−R

2
p)), Residual Mean Squares (MSres), Akaike Information Criteria and Bayesian Information

Criteria.

For the MSres = SSres

n−p , there is a tradeoff between the loss of degrees of freedom and a decrease in

the SSres values - ideally, we want a model with the minimum MSres. We may desire to choose a model

with the number of regressors such that this value is minimized, or a nearby model.

5.8.7.1.1 Akaike Information Criteria The AIC method is based on maximising the expected

entropy of them model, trading off goodness-of-fit for simplicity of model.

Definition 53 (AIC). We define the AIC to be the value

AIC = −2 log(L) + 2p, p = k + 1 (5.148)

where L is defined the likelihood function of the model.

In the ordinary least squares setting, we have (verify this): AIC = n log(SSres

n ) + 2p and our goal

may be to select the model with smallest AIC value.

5.8.7.1.2 Bayesian Information Criteria The BIC is an extension of AIC2 (see Section 5.8.7.1.1)

with several variants. The Schwartz and Sawa variant is given

BICs = −2 log(L) + p log(n) (5.149)

which in the ordinary least squares yields BICs = n log(SSres

n ) + p log n. We would like a model with

the lowest BIC.

5.8.7.2 Computational Methods - Brute Force and Stepwise Greedy Solutions

5.8.7.2.1 Brute Force Method : With a total of k candidate regressors, we may fit a model over

the power set and compare 2k such models to compare based on agent-defined utility criterion (see

5.8.7.1). Note that since each model gives regression coefficient estimates, a useful side-effect is that we

may be able to detect multicollinearity issues by observing instability of the regression estimates. If this

is computationally unviable we may opt for greedy methods, although no global optima is guaranteed.

5.8.7.2.2 Forward Selection Method : The steps may be enumerated as follows (1) begin with

the intercept model, and pick a regressor that has the highest correlation with the response. (2) If the F

statistic of the model is significant beyond some threshold, greedily select another regressor that has the

largest correlation with response after adjusting for the effect of the first regressor on response. This is

known as partial correlation. (3) Compute the partial F statistic, and if this exceeds threshold add the

regressor, repeat and otherwise terminate.

The partial correlation can be determined as follows:

1. First derive ŷ = β̂0 + β̂1x1

2. Then fit x̂j = α̂0j + α̂1jx1, for all j ∈ [2, k]

3. Derive ρ(ŷ − y, x̂j − xj), for all j ∈ [2, k]

2note that when using AIC and BIC, the comparison of models are only valid when the response is the same. Additionally,

the model should be fit on the same size of data, since the input n is part of the criterion.
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The value in step 3 is known as the partial correlation value of xj with y, which also yields the largest

partial F statistic
SSreg(x2|x1)
MSres(x1, x2)

which we compare against the threshold to see if we shall continue.

5.8.7.2.3 Backward Elimination Method : The method may be described in a similar format to

the forward selection, but in reverse order. First begin with the full k regressor model, and examine the

partial F statistic (recall that this is equivalent to the t-test statistic) as if it were the last variable to be

added in the model. If the smallest partial F statistic is lower than some threshold, remove the regressor

and repeat or terminate.

5.8.7.2.4 Stepwise Regression Method : The stepwise method is a combination of the forward

and backward elimination methods. Beginning with the intercept model, we initiate forward selection.

The modification is that after the addition of each variable we conduct partial F tests for all variables

in the model to see if any regressors previously added have become redundant due to relationships

between it and the incoming regressor. The removal or addition of more regressors then follows from the

comparison against two thresholds, which are generally distinct.

5.9 Analysis of Variance Methods - ANOVA/F-Test

The question we may have is whether the differences in population parameter estimates are considered

significant or simply due to random variance.

5.9.1 F Test

A one-way layout is an experimental design in which independent measurements are made under several

treatments. As such, the F test is a generalization of the two sample/treatment problem. Let there be I

groups and J measurements in each group. We also discuss the case when Ji ̸= Jj for some i ̸= j group.

Further denote Yij the j-th measurement in group i, and suppose the sampling is generated from the

function

Yij = µ+ αi + eij , eij
IID∼ Φ(0, σ2) (5.150)

and αi are normalized such that
∑

i αi = 0.

The null hypothesis can be specified as follows: H0 : ∀i, αi = 0, that there is no difference between

the expected values under selected treatment.

Definition 54 (ANOVA Sum of Squares). Let Ȳi = 1
J

∑
Yij and ¯̄Y = 1

IJ

∑I∑J
Yij, then we can

decompose the total sum of squared errors into the group sum of squares and sum squares between groups.

In particular, we have

I∑ J∑
(Yij − ¯̄Y )2︸ ︷︷ ︸
SST

=

I∑ J∑
(Yij − Ȳi)2︸ ︷︷ ︸
SSW

+ J

I∑
(Ȳi − ¯̄Y )2︸ ︷︷ ︸
SSB

(5.151)

where the second and third term attribute sum squares to within and between groups respectively.
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