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Abstract

This book is designed to be a practical handbook for all finance professionals, practitioner or academic.
It is an organization of the various knowledge domains, with a focus on drawing links in the intricate
web between the theory and practice of finance that market participants seek to unfold. It contains
discussions of trading anomalies, premias and inefficiencies. It contains discussions in discretionary
and quantitative trading. Discussion stretches across theoretical work, such as statistical methods,
linear algebra and financial mathematics. Applied work in equity research, quantitative research and
macroeconomic theory is involved.

This work is attributed to the brilliant writers, academics, scientists and traders before me. Although
we have tried to credit the referenced work where relevant, to give a complete reference for its source
is impossible. The work has been organized and compiled from various texts, lecture notes, journals,
blogs, personal communications and even scraps of scribbled notes from the author’s time in college.
These contain notes from blogs referencing journals, journals referencing blogs, blogs referencing blogs
referring journals - you name it. We apologise if we have failed to credit your work. Other work
is original. Readers may reach us at hangukquant@gmail.com. The updated notes are released at
hangukquant.substack.com.

Faith is to have believe without seeing. This work is dedicated to those who placed their faith in
me. To Jeong(s), Choi, Julian and my dearest friends who have shaped my world view and colored it
rainbow.
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Chapter 1

Introduction

1.1 Guidelines for Reviewing Work

The following are the stages of alpha formulations.

Idea 1 (This means to further explore the idea creatively. This is a precursor to a Test.).
Test 1 (This refers to parameterized research idea that is to be verified as a Strategy.).
Strategy 1 (This explores the implementation and characteristics of a Test.).

The following are the stages of theoretical formulations.

Definition 1 (Standard conventions and formal nomenclature are introduced.).
Problem 1 (A formalization of the problem statement is provided).

Exercise 1 (An example or working problem to demonstrate concepts discussed).

The following are stages of theoretical derivations

Lemma 1 (An important result used as is or for other derivations.).

Corollary 1 (An important aside of the theoretical work.).

Theorem 1 (A central result with derivations).

Result 1 (A central result without proof.).

The following are for declarative statements.

Proposition 1 (An opinion of sorts.).

Fact 1 (A statement of (almost) undeniable truth.).



Chapter 2

Ordinary Calculus

Theorem 2 (Integration By Parts). The integration by parts formula takes form

/udv:uv—/vdu

Theorem 3 (L’Hopital’s Rule).



Chapter 3

Linear Algebra

Here we discuss concepts in linear algebra - notably the literature on this subject is divided into two
different schools. One introduces linear algebra as the mathematics and computation of multiply defined
linear equations. Here the focus is on teaching linear algebra as a tool for manipulation and compu-
tation in multi-dimensional spaces. Determinants are introduced early on, and focuses are on matrix
operations. The second approach is to treat matrices as abstract objects, laying focus to the structure
of linear operators and vector spaces. Determinants and matrices are only introduced later. Here we
provide both - the first will focus on the linear algebraic manipulation of matrices on finite-dimensional,
Euclidean spaces. The second treatment will focus on the underlying mathematics of the structure of
linear operators and their properties, including the mathematics in infinite dimensional vector spaces

and over complex fields.

3.1 Matrix Differentiation

Definition 2 (Differentiation of a Matrix). Let y = ¥(x) where y is m-vector and x is n-vector, then

define % to be the Jacobian matriz of the transformation ®, which is an m - n matriz of the first order

partial derivatives with elements %i ;= g;’g with i € [m], j € [n].
Lemma 2 (Differentiating y = Ax). Let y be m-l matriz and A be m-n matriz, and A is not a function

on x. Then % =A.
T

Proof. Since the y; = >_}_ | airpxy, it follows gi’J = q; for all i € [m],j € [n]. Then % =A O

Theorem 4 (Chain Rule on Matrices). Let y = Az, and x be a function of z, with A L z. The matriz

dimensions are assumed as fit, then
by o

=A—.
0z 0z
Proof.
dy _dyox _ , 0%
b5z Oxdz Oz
O

Corollary 2 (General Derivation of the Matrix Differentiation). By using the results (AB)~! = B~1A~1
and (AB)T = BTAT together with outcomes obtained in Lemma @ and Theorem 4| we can derive the

differentiation of matrices on more complex linear algebraic equations.



Chapter 4

Set Theory

4.1 Algebra of Sets

Set theory has many uses under both theoretical and applied settings. One of the topics using sets is
probability theory, where probability measure (see Definition E[) and random variables (see Definition
are set functions from abstract spaces to real numbers. The most elementary use of sets in probability

theory is the treatment of experiments, sample outcomes, sample spaces and events. (see Definitions
&)

Definition 3 (Definition, Operations and Terminologies of Sets). Here we define common operations

that may be applied on sets, collectively known as set algebra.
1. Intersection: C = ANB = Vee C, (e € A) A (e € B).
2. Union: C =AUB = VYee (C,(e€ A)V (e € B).
3. Mutually exclusive (mutex): ANB =0 = {}.

4. For A on sample space (see Definition @ S, the complement AC is defined as the set satisfying
(AU AY = S)A (AN AC =0).

A common technique of visualising the relationships between sets is with the use of Venn diagrams.
In keeping with the dense presentation, we will not present Venn diagrams here. The mistake that
many beginners make in relation to sets and probability theory is in using the Venn diagram to infer
independence. Do not make the same mistake. Mutual exclusiveness and independence (see Definition
are different concepts. Independence involves probability measures (see Definition E[) while mutual
exclusion do not require the discussion of probability.

There are two methods in proving that some set A = B. The informal method is to draw a Venn
diagram and show they represent the same area. The more formal, and mathematically rigorous method
is to show that (A C B) A (B C A). This is done by arguing that for any element a,a € A = a € B

and vice-versa.



Chapter 5

Probability and Statistical Models

The treatment of probability theory is typically done in two-parts, one without the use of measure theory
(at the undergraduate level) and the other employing measure theoretic arguments (at the graduate level).
Although they are almost never taught together (perhaps for good reason), here we aim to present them
shoulder-to-shoulder. Measure theoretic arguments are necessary to draw convergence arguments and
discuss concepts belonging to the uncountably infinite world. However, since they are describing the same
concept, there is utility in drawing the bridge between the two probability treatments where relevant.
Hopefully what is achieved is a more complete view of statistics and probability theory while minimising
the attendant disorganization. It is also hoped that this way of presentation also ease the internalization
of measure theory probability concepts. We assume basic proficiency in set theory. In fact, not much is

assumed, except that the reader is familiar with algebra involving sets. (see Section [4.1))

5.1 Probability Spaces and Probability Measures

Definition 4 (Experiment). An experiment in statistics is a procedure that can be repeated an infinite

number of times with a well defined set of possible outcomes.

Definition 5 (Sample Space and Sample Outcomes). Each of the possible outcomes in an experiment

(see Deﬁnition is called an outcome s € S where S is the sample space of all possible outcomes.

Definition 6 (Event). A set of possible outcomes (a subset of the sample space) (see Definition [3]) is

known as an event, which we denote e. Then e C S.

Inf. probability spaces are used to model situations in which random experiments have infinitely
many possible outcomes. There are 2 general types, such as (i) sampling from z € [1] and (ii) inf. coin
tosses. The sample space is the set of possible outcomes. That is w : w € [1], and Qipr = {w = wiws...,:
wy, represents n-th coin toss}, the set of inf. sequences of head and tails. These sample spaces are both
infinite and uncountably infinite, meaning we cannot list their elements in sequence. The P(w) = 0 for
any outcome w belonging to the set. We cannot determine the probability of event A € 2 by summation

of set members, and define probability of events directly.

Definition 7 (c-algebra). Let Q # () be a set, let F be a collection of subsets of Q. Then F is o-algebra
(or o-field) provided:

1. 0eF



2. Ae F — A°e F

3. sequence A1, Ag,--- € F = U2 A; € F. Any sequence of sets belonging to F also has union of

sets in F.

It is easy to confuse the power set with the sigma algebra of a set. The power set is the largest possible
sigma algebra of a set. The trivial o-field {0, Q} is not the power set of 2, but is also o-algebra. All
operations on elements of sigma algebra set gives us other sets in the sigma algebra. It is easy to derive
that any union of subsets are in the sigma algebra, and so are their intersections (consider the De-Morgan

on complement of the union of complements).

Definition 8 (P function). The probability function is a function P that satisfies axioms that are collec-
tively known as ‘Kolmogorov Axioms of Probability’. For sample space  and events A € F defined over

the sample space, the P function satisfies the same properties as defined in Definition [9

Definition 9 (P measure). Let Q be non-empty set and F be o-algebra of subsets of Q. Then probability
measure P is function mapping every set A € F to range [0,1], written P(A) : F — [0,1]. We require

1. P(2) = 1, note that Q € F given ) € F and complement property.

2. (countable additivity) where Ay, As,--- are disjoint set sequence, then P(US2 ;1 A,) = X2 P(A,).
This implies finite additivity P(U?_, A;) = X7 P(A;) on disjoint sets.

Theorem 5 (Properties of Probability Measures/Functions). We state some trivial but important results
of probability functions without proof. Beginning with (i) P(A€) = 1 — P(A), (i) P(0) = 0, (ii) A C
B = P(A) <P(B), (iv)P(A) <1, (v) P(AUB) =P(A)+P(B) —P(AN B). A less trivial theorem is
provided with proof, with regards to the probability measure on k unions:

PUPA;) = Y P(A) = Y P(A; N A) + -+ ()" B(OFA;)  forany A; on S, i€ [n].  (2)

i i<j

Proof. (verify this) O
Exercise 2 (Math is Weird Sometimes). Consider events A, B. Then we have P(AU B) = P(A) +
P(B) —-P(ANB) = P(A) +P(B) — (1 -P((AN B)Y) = P(A) + P(B) — (1 — P(A° U BY)) = P(A) +
P(B) — 1+ P(AC U B®). The probability of at least one of A, B occurring increases with the probability
of at least one not occurring!
Exercise 3. Consider a probability measure as defined in Definition[9, then prove that

1. (Ae F,BeF)NAC B = P(A4) <P(B)

2. Ac FA{A,}2, € FAlLImy 0o P(A,) =0A (Vn,AC A,) = P(4)=0
Proof. 1. We see that for A C B we have B = AU (B\A) the result follows by countable additivity

of disjoint sequences.

2. For all n, P(A) <PP(A,,) and therefore P(A) < lim,_,o P(A4,) =0 and 0 < P(A4) < 0.
O

Exercise 4. Prove that the set of sequences of coin tosses in which outcome of each even numbered coin

toss matches the outcome of the preceding toss, such that
A={w=wiws 1 w; = wa, w3 = wy}

is uncountably infinite. Furthermore, show that if p-head is not zero or one, then P(A) = 0.



Proof. Consider the function ¢ : A — Q and ¢(w) = wiwsws--- then the function is injective and
surjective. Then the cardinality of A matches cardinality of .., which means that A is uncountably
infinite. Next, let A, = {w: w1 = wa, - wap—1 = wa,}. Then

P(A) = lim P(4,) = lim [p*+ (1—p)?]" "*E& 0.

n—oo n—0o0

O

Definition 10 (Probability Space). The triple (2, F,P) is termed probability space, with reference to
definitions[7 and[9

Definition 11 (Uniform Lebesgue Measure £ on Unit Intervals). Models choice of sampling a random

number from unit interval, with probability measure on [a,b] by
Pla,b] = P(a,b) = b —a, 0<a<b<1
. Probability measure on point is 0.

Consider that we can define an open interval (a,b) as a union of sequence of closed intervals, we can
write
(a,b) = U0, [a+ ;b— 1] ,
n n
. Now consider a o-algebra formed by starting with the closed intervals and putting in everything else

required to have a og-algebra. Then it turns out that this o-algebra contains all open intervals also.

Definition 12 (Borel o-algebra, B). The o-algebra constructed by beginning with closed intervals and
adding everything else required to have a o-algebra is called the Borel o-algebra of subsets [0, 1], denoted

B. Sets belonging to the set B are called Borel sets, and are subsets of [0, 1].

Exercise 5 (Infinite, Independent Coin Toss Space). We can illustrate infinite probability spaces with a
sequence of infinite coin tosses. Let Qo denote the set of possible outcomes, and the probability of head,
tail be p,q = (1 — p) respectively, both non-zero. The tosses are independent, and we want to construct
a probability measure on this space corresponding to this experiment. We can define P(0) = 0,P(Q) = 1.
The 2 sets form a o-algebra, and we denote this Fo = {0,Q}. Note that |Fo| = 22 Then, consider the
2 sets Ay and Ar, denoting the sets that begins with a head and the other with a tail. For instance,
Ag may be denoted {w : w; = H}. Let the P(Ag) = p,P(Ar) = ¢, and we have defined the probability
measure P for the o-algebra Fi = {0,Q, Ay, Ar}. Note also that |Fi| = 22" No other sets need to be
added to form a o-algebra. We can continue for Fo of size 22° and so on. The continuation of this
process gives us the probability of every set that can be described in terms of finitely many tosses. It
turns out that once this is done, the other sets that are not describable in terms of finitely many coin
tosses have determined probabilities. Consider for example, consider the set containing singleton infinite
sequence of heads HHH - - -, which is not a finite sequence but is a subset of Ag, Ay ---. Furthermore,
since we defined P(Ag) = p,P(Agg) = p* and so on, the singleton set has probability equals zero as
p < 1. The same argument can used to arque that the probability of any individual sequence € Qo equals
zero. We create the o-algebra Foo by putting in every set that can be described by the finite coin tosses,
and then everything else required for the o-algebra property, and it turns out that we will then have the
probability of every set in Foo. It is determined but not necessarily easily computed, as we shall see. For
instance, consider the set A = {w = wiwy -+ : lim, M = %}, which defines the set for which

the long-run average of heads is half. This is in Fao. To see this, for constant m,n € ZT define

Hy(w, - wn) 1 1
Snom = |t — | < =
’ {w n 2 m}



. This is in F,, with known probability. By definition of limit, the specified limit is satisfied iff for every
positive integer m, there ezists a positive integer N such that Vn > N,w € S,, ,. In other words, the set

for which w satisfies the limit can be expressed
A =N UR=1 MRen Snom-

Then A € F by formulation since it is the union and intersection of members of the set. It turns out the
Strong LLN asserts P(A) =1 if p=0.5 and 0 otherwise.

The probability zero event in uncountable probability spaces has a paradox, as highlighted in our
example above. Whenever an event is said to be almost sure,we refer to it as the case P(4) = 1, even
though it may not include every possible outcome. The events not included together has probability
P(A°) =0

Definition 13 (Almost Surely). Let (2, F,P) be a probability space. If set A € F satisfies P(A) = 1,

we say event A occurs almost surely.

5.2 Counting and Combinatorics

We have defined probabilities, sample spaces, events and other important fundamental artefacts of ran-
domness in the Section [5.1] The most basic probability model is the counting model. Combinatorics is
the science and practice of counting, arranging and ordering of objects. Surprisingly, like Kolmogorov

probability axioms, combinatorics can be reduced to four fundamental rules.

Theorem 6 (Combinatorial Multiplication Rule). Operations A;, i € [k] performed in sequence can be

conducted in total of I¥n; where n; is the number of ways to conduct A;.

Theorem 7 (n-permutate k). The number of permutations of length k from n distinct objects without

repetitions s written

n!

P =
YT = k)

3)

Proof. The proof follows from application of Theorem [6] by first considering n possible ways, then n — 1

ways down to n — k + 1 ways. O
Corollary 3. By the Theorem[] the number of ways to arrange n distinct objects is n!.
Result 2 (Stirling’s Approximation). Stirling’s formula for approxzimating n! is written

nl &~ V2mn" 2 exp(—n). (4)
In practice we can write in log form

1

log V271 + (n+ i)logn —-n

and then exponentiating after substituting the value of n.

Exercise 6 (The Rook Problem). How many ways are there to arrange eight rooks on an eight by eight
chessboard such that they are non capturing? See that we each rook once placed, eliminates one row and
one column each from the next iteration. Eight rooks can have valid formations 8Py and be internally

permutated Pg times for a total of 8! - 8! arrangements.



Definition 14 (n-permutate r categories, multinomial coefficients). The number of permutations of n

objects of r categories where each type i has n;, i € [n] objects is written

n!

Tin,l ()

where Y. n; = n. This is known as the multinomial coefficient, due its appearance when ezpanding

multinomials.

Exercise 7 (Larsen and Marx [4]). Find the coefficient of 2** in the expansion of (1 + z° + x9)190 by

combinatorial arguments.

Proof. The coefficient of the term corresponds to the number of ways in which the term can be formed.

23

Here 222 can only be formed from two of x?, one of 2° and ninety seven ones being multiplied together.

Then the coefficient is 2!110!8!7!. O

Exercise 8 (Number of Passwords). How many total passwords can be constructed that is length of ten,

constructed from four letters, four numbers and two symbols. Let the total symbols admissible be eight.

Proof. One can choose 10* total numbers, 8 symbols and 26* - 2% letters (including upper cases). Once
the numbers, letters and symbols are chosen, they can be arranged in % ways. The total number of

passwords is then 4!1401!21 -10%-82.26% . 24, O

See that we can often think of the permutation problem as a two step choice of first choosing the

candidates and then arranging them.

Theorem 8 (Circular Permutations). There are (n—1)! ways to permute n distinct objects in a circle. Do
this by writing "P,, and see that a factor of n permutation arrangements are repeated by the ‘circularity’.

Divide by n and we get n!/n = (n — 1)

Exercise 9 (The Necklace Problem). We have 10 beads of different colours, how many different necklaces

can we form?

Proof. Their circular arrangement permutation cardinality is (n — 1)! for n = 10. However, since the
necklace flipped over is a different circular permutation but the same necklace, we actually need to divide
by two to obtain @ To see this consider a smaller necklace of ROY. This is the same necklace RYO
flipped! We divide by n to account for ROY being identical to OYR and YRO. The flipping accounts

for further division factor of two. O

Definition 15 (n-choose k, binomial coefficients). The number of ways to form combinations of size k

from set of n distinct objects without repetitions is written

(&) == i ®

Due to its common appearance as coefficients in binomial expansions, this term is also called the binomial
coefficients. Cross reference this with the multinomial coefficients. (see Deﬁnition

Proof. The proof for this can be seen by first permuting k& of n objects to get "Pj, and then seeing that
order does not matter and dividing by k!. O



Theorem 9 (Pascal’s rule). For positive, natural numbers n and k, the Pascal’s rule states that ("H) =

=
(Z) + (kfl) This can be thought of recursively. To choose k objects from n + 1 objects, I can first
choose or not choose the ‘first’ object. Choosing the object will mean I can choose k — 1 objects from
the remaining n objects. If I do mot choose the object then I still have to pick k out of the remaining n

objects. The total number of possibilities are the sum total.

Exercise 10. See in Theorem [5 we defined the probabilities of n unions of events. Here we want to
show that the formula adds the probability of each outcome exactly once - there is no double counting or
under counting. Consider the set of outcomes in U} A, that belong to some k of the A; and no others.
We want to show that the formula counts this set of outcomes exactly once for arbitrary k. See that
these outcomes get counted (’f) times in term y_; P(A;), (g) times in Y, .P(A; N A;) and so on. The

outcomes are counted a total of

(1) = ()= ) () "

times. See that we can write the binomial expansion (—1 + 1)F = 0F =0 = Z?:o (’;)(—1)j1, Then see

i<j

that Equation ] equals (£) = 1 and we are done.
Theorem 10 (Some Binomial Identities). Prove that
1LY i () =n-2n7h
2. () = ().
3. Y=o (Z) =2"
4 () = ()

Proof. For 1. see that (1 + 2)™ = > p_; (7)a" - 1. Differentiating both sides we get n(1 + z)"~! =
> ieo (1)ka*~1. Substitute z = 1 and we are done. For 2. logicize that

2n\ _ (n\(n n n n T n\ (n
n) \0)\n 1/\n—-1 n/\0/"
Using the identity (}) = (,,”,) we obtain the equality. O

We have worked hard to count the total number of arrangements and choices of objects. This is often

motivated by the desire to find the probability of an event.

Theorem 11 (Combinatorial Probability, the classical definition of probability). If there are n ways to

perform an operation and m satisfies some condition for occurrence of an event, then P(A) = ™.

Exercise 11 (The Birthday Problem). Assume that birth is uniformly distributed over 365 days in a
year and k people are selected at random. What is the probability that there is at least one overlap in
birthday dates?

Proof. By multiplication rule (see Theorem @ the total number of birthday sequences are 365F. The
total number of sequences with k people with distinct birth dates are 36°P,. Then the probability that
at least two people share birthdays are simply

365~ — 36°p;
_ . 8
365% )
We require n > 23 for the probability to be greater than half. O

10



Exercise 12 (Discrete Random Walk). A drunkard walks forward and backward randomly with equal

probability. At time/step n what is the probability that he is r steps ahead of where he began?

Proof. Let x be number of forward steps and y be number of backward steps. Then = 4+ y = n and

x —y = r and the equations solve to x = ";‘T, y = “5=. The total number of ways for which he ends up

and the total number of ways to take n steps is 2". His probability for r-forward

n!

at r-front is AFry. n=ry

()

on

O

is

Definition 16 (von Mises probability). For an experiment (see Definition repeated n times under
identical conditions and if event E (see Deﬁnition@ occurs m times out of the n repetitions, the proba-
bility of event E is written P(E) = lim ™.

n— oo

5.3 Random Variables

In general, a random variable can be said to be a function that maps outcomes from a sample space to
real numbers. We write notations such as X : 2 — R to show this. When the sample space (2 is finite,

or countably infinite we can define a probability function as such:

Definition 17 (Probability Function on Countable Sample Space). For finite or countably infinite sample
space Q, real valued function p is said to be discrete probability function if it satisfies 0 < p(s),Vw € Q

and Y cq =1

Definition 18 (Discrete Random Variable). A function with domain Q2 ranging over finite or countably
infinite set of real numbers is called a discrete random variable. Then for such a random variable X we
can write X (w) =k for w € Q and k € R.

Definition 19 (Discrete Probability Density Function). Associated with the random variable defined as
mn Deﬁnition its probability density function px (k) is the probability function such that

px (k) =P({w € QX (w) = k}) = P(X = k). 9)

The probability density function for a discrete random variable (Definition [I8]) can be expressed by
formula or by enumerating the domain (in the finite case) and assigning probability values. Often we are
interested in the probabilities of a range, as opposed to at a point. We can then consider its cumulative

density function.

Definition 20 (Discrete Cumulative Density Function). For discrete random variable X (Definition
@), the probability that X takes on wvalues t or lesser is written by its cumulative density function Fx,

written
Fx(t) =P({w € QX (w) < t} = P(X < t). (10)

Random variables often take values that have continuous domain. We might have sample spaces that
contain an uncountably infinite number of outcomes. A discrete probability function p(s) as defined in
Definition [I7] is not applicable to outcomes in continuous sample spaces. Uncountably infinite sample
spaces often have point probabilities of zero. We give a more general definition under measure theoretic

settings that generalizes the behavior of random variables.

11



	Title
	Abstract
	Introduction
	Guidelines for Reviewing Work

	Ordinary Calculus
	Linear Algebra
	Matrix Differentiation

	Set Theory
	Algebra of Sets

	Probability and Statistical Models
	Probability Spaces and Probability Measures
	Counting and Combinatorics
	Random Variables


