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Abstract

This book is designed to be a practical handbook for all finance professionals, practitioner or academic.
It is an organization of the various knowledge domains, with a focus on drawing links in the intricate
web between the theory and practice of finance that market participants seek to unfold. It contains
discussions of trading anomalies, premias and inefficiencies. It contains discussions in discretionary
and quantitative trading. Discussion stretches across theoretical work, such as statistical methods,
linear algebra and financial mathematics. Applied work in equity research, quantitative research and
macroeconomic theory is involved.

This work is attributed to the brilliant writers, academics, scientists and traders before me. Although
we have tried to credit the referenced work where relevant, to give a complete reference for its source
is impossible. The work has been organized and compiled from various texts, lecture notes, journals,
blogs, personal communications and even scraps of scribbled notes from the author’s time in college.
These contain notes from blogs referencing journals, journals referencing blogs, blogs referencing blogs
referring journals - you name it. We apologise if we have failed to credit your work. Other work
is original. Readers may reach us at hangukquant@gmail.com. The updated notes are released at
hangukquant.substack.com.

Faith is to have believe without seeing. This work is dedicated to those who placed their faith in
me. To Jeong(s), Choi, Julian and my dearest friends who have shaped my world view and colored it
rainbow.
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Chapter 1

Introduction

1.1 Guidelines for Reviewing Work

The following are the stages of alpha formulations.

Idea 1 (This means to further explore the idea creatively. This is a precursor to a Test.).
Test 1 (This refers to parameterized research idea that is to be verified as a Strategy.).
Strategy 1 (This explores the implementation and characteristics of a Test.).

The following are the stages of theoretical formulations.

Definition 1 (Standard conventions and formal nomenclature are introduced.).
Problem 1 (A formalization of the problem statement is provided).

Exercise 1 (An example or working problem to demonstrate concepts discussed).

The following are stages of theoretical derivations

Lemma 1 (An important result used as is or for other derivations.).

Corollary 1 (An important aside of the theoretical work.).

Theorem 1 (A central result with derivations).

Result 1 (A central result without proof.).

The following are for declarative statements.

Proposition 1 (An opinion of sorts.).

Fact 1 (A statement of (almost) undeniable truth.).



Chapter 2

Ordinary Calculus

Theorem 2 (Integration By Parts). The integration by parts formula takes form

/udv:uv—/vdu

Theorem 3 (L’Hopital’s Rule).



Chapter 3

Linear Algebra

Here we discuss concepts in linear algebra - notably the literature on this subject is divided into two
different schools. One introduces linear algebra as the mathematics and computation of multiply defined
linear equations. Here the focus is on teaching linear algebra as a tool for manipulation and compu-
tation in multi-dimensional spaces. Determinants are introduced early on, and focuses are on matrix
operations. The second approach is to treat matrices as abstract objects, laying focus to the structure
of linear operators and vector spaces. Determinants and matrices are only introduced later. Here we
provide both - the first will focus on the linear algebraic manipulation of matrices on finite-dimensional,
Euclidean spaces. The second treatment will focus on the underlying mathematics of the structure of
linear operators and their properties, including the mathematics in infinite dimensional vector spaces
and over complex fields. Some of these treatments and notes on Linear Algebra herein are adapted from
the texts from Ma et al. [0], Axler [I] and Roman [10].

3.1 Computational Methods in the Euclidean Space

3.1.1 Linear Systems

Definition 2 (Linear Equation). A linear equation is one in which for variables {x1,--- ,xn}, equation

takes form

i=1

where a; € R,i € [n] and b € R.

Definition 3 (Zero Equation). A zero equation is a linear equation (see Definition @) where all i €
[n],a; =0 and b= 0. That is,

0z1 4+ 0xg + -+ -0z, = 0. (3)

The variables x;,7 € [n] in Definition [2] are not known and it is our task to solve for the solutions
to these. The number of variables defines the dimensionality of our problem setting. For instance, see
that the equation ax + by + cz = d specify variables in the three-dimensional space (z,y, z) € R3. For

instance, the linear equation z = 0 specifies an xy-plane inside the xyz-space.



Definition 4 (Solution and Solution Sets to a Linear Equation). A solution to a linear equation (see

Deﬁnitz’on is a set of numbers {x1 = s1,T3 = Sa,* -+ , &y, = Sn} that satisfies the linear equation s.t.

S as, = b, (1)
i=1

The set of all such solutions is called a solution set to the equation. When the solution set is expressed
by equations representing exactly the equations in the solution set, these set of expressions are known as

the general solution.

For instance, in the xy-space, solutions to the equation x +y = 1 are points taking the form (x,y) =
(1—s, s) where s € R. In the xyz-space, the solutions to the same equation are points (x,y, z) = (1—s, s, t)
where s,t € R. The solution set form points on a plane. The solution set to the zero equation (see
Definition |3)) is the entire space R™ corresponding to the number of dimensions in the linear equation.
The solution set to .. 0z; # 0 is 0.

Definition 5 (Linear System). A finite set of m equations in n variables x1,---x, is called a linear

system and may be represented
a;1T1 + ;9T + - - -+ ainT, = by, i€ [m] (5)
where a;;,1 € [m],j € [n] € R.

Definition 6 (Zero System). A zero system is a linear system (see Deﬁm’tz’on@ where all the constants

aji,bj, i € [n],j € [m] are zero.
Definition 7 (Solution and Solution Sets to a Linear System). A solution to a linear system (see
Deﬁm’tz’on@ is a set of numbers {x1 = s1,T3 = Sa, -+ Ty, = Sp} that satisfies all linear equations (i.e)

Zajisi =bj, j €[m] (6)
i=1

The set of all such solutions is called a solution set to the system. When the solution set is expressed by
equations representing exactly the equations in the solution set, these set of expressions are known as the

general solution.

Definition 8 (Consistency of Systems). A system of linear equations that has solution set # () is said

to be consistent. Otherwise it is inconsistent.

Every system of linear equations will either be consistent or inconsistent. Consistent systems have

either a unique solution or infinitely many solutions.

Exercise 2. Show that a linear system Ax = b has either no solution, only one solution or infinitely

many.

Proof. If the linear system is not consistent then it must have no solution. Otherwise, it may have a
unique solution, or more than one solution. Suppose there are two solutions v # v and Au = Av = b.

Then we may write
Aftu+ (1 —t)v) =tAu+ (1 —t)Av=tb+ (1 —t)b=tb+b—tb=b. (7)

This is valid for all t € R, and so we have infinitely many solutions. O



For example, a system of two linear equations in two-dimensional space each representing a line has
infinite solutions if they are the same line, no solution if they are parallel but different lines, and exactly

one solution otherwise.

Exercise 3. In the xyz-space, the two equations

I
.
S
&
S

(8)
da, (E2) 9)

a1x + b1y +c1z

asx + by + coz

where a1, by, c1 # 0AJag, ba, ca # 0 represents two planes. The solution to the system is the intersection
between the two planes. Logicize that there is either no solution (Ey//FE2) or infinite number of solutions
((Ey = Es) V (Eq intersects Ey on a line)).

3.1.1.1 Elementary Row Operations (EROs)

Definition 9 (Augmented Matrix Representation of Linear Systems). See that the system of linear
equations (Deﬁm'tion@ given

V] cm, Z Q;jiTi = b]' (10)
=1

may be represented by the rectangular array of numbers

:

ail a2 - Ain | b1
I

a1 Ay - Qop 1 b
1 11
I ( )
|

Am1 Am2 Tt Amn 1 bm

and we call this the augmented matriz of the system. We denote this (A|b). Sometimes, we omit this

representation and just assign a single letter, say M, to represent the entire matriz.

Definition 10 (Elementary Row Operations). When we solve for a linear system, we implicitly or
explicitly perform the following operations; i) multiply equation by some non-zero k € R, (ii) interchange
two equations, (iii) add a multiple of one equation to another. In the augmented matriz (see Definition
@, these operations correspond to multiplying a row by a non-zero constant, swapping two rows and
adding a multiple of one row to another row respectively. These three operations are collectively known

as the elementary row operations. We adopt the following notations
1. kR; = multiply row i by k.
2. R; < R; = swap rows i, j.
3. Rj + kR; = add k times of row i to row j.

Definition 11 (Row Equivalent Matrices). Two matrices A, B are said to be row equivalent if one may

be obtained by another from a series of EROs. We denote this by
AZB. (12)

Theorem 4 (Solution Sets of Row Equivalent Augmented Matrix Represented Linear Systems). Two
linear systems (Definition[5) with augmented matriz representations (A|b), (C|d) have the same solution

set if (A]b) Z (C|d).

Proof. See proof in Exercise [14] using block matrix notations. O



3.1.1.2 Row-Echelon Forms

Definition 12 (Leading Entry). The first non-zero number in a row of the matriz is said to be the

leading entry of the row.

Definition 13 (Zero Row). Let the row representing a zero equation (see Definition[3) be called the zero

row.

Definition 14 (Zero Column). Let the column representing all zero coefficients in the representative
linear system for some variable (see Deﬁm’tion@ be called the zero column. That is, the column has all

ZETO0S.

Definition 15 (Row-Echelon Form (REF)). A matriz is said to be row-echelon if the following properties
hold:

1. Zero rows (Deﬁm’tz’on are grouped at the bottom of the matrix.

2. If any two successive rows are non-zero rows, then the higher row has a leading entry (Definition

@) occurring at a column that is to the left of the lower row.
For matriz A, we denote its matriz REF as REF(A).

Definition 16 (Pivot Points/Columns). The leading entries (Definition [I3) of row-echelon matrices
(Definition are called pivot points. The column of a row-echelon form containing a pivot point is

called a pivot column, and is otherwise a non-pivot column.

Definition 17 (Reduced Row-Echelon Form (RREF)). A reduced row-echelon-form matriz is a row-

echelon-form matriz that has

1. All leading entries of non-zero row equal to one. (Deﬁm’tions and

2. In each pivot column, all entries other than the pivot point is equal to zero. (Deﬁm’tion@)
For matriz A, we denote its matric RREF as RREF(A).

Note that a zero system is an REF (and also an RREF) by the Definitions |15| and We show that

obtaining the REF and RREF gives us an easy way to obtain the solution set to a linear system.

Exercise 4 (Finding solutions to REF, RREF Representations of Linear Systems; Back-Substitution

Method). Find the solution set to the linear systems represented by the following augmented matrices.

(see Definitions[9, [3 and[]))

1.
1001
01 02 (13)
00 1:3

2.
022 1 —2:2
0011 1:3 (14)
0000 24



1 -1 0 3!-2
0 205 (15)
0 0 000
4.
00 0:0
1 (16)
0 0 010
5.
3 114
0 21 (17)
0 0:1
Proof. 1. Tt is easy to see that x1 = 1,22 = 2,3 = 3 is the unique solution this linear system.

2. Since this represents the linear system

2eo + 223+ 4 — 225 = 2, (18)
r3+xa+x5 = 3, (19)
25 = 4, (20)

solve. We let the solutions to variables of non-pivot columns be arbitrary. That is, ;1 € R. The

third equation says x5 = 2. Substituting into the second equation, get
T3+ T4 +2 =3, (21)
so x3 = 1 — x4. Substituting into first equation,
20 +2(1 —wg) 41y —2-2=2, (22)

SO X9 = 2+ %m. So there are two free parameters, and we arrive at the general solution
(z1,22,23,24,25) = (8,2 + %t,l —t,t,2), where s,t € R. This technique is known as the back-

substitution method.

3. By the same back-substitution method, arrive at the general solution (x1, %2, 23,24) = (-2 + s —
3t, 8,5 — 2t,t) where s,t € R.

4. The solution set is (r,s,t) = R3.

5. This system is inconsistent! (Definition

3.1.1.3 Gaussian Elimination Methods

Let AZR IfRis (R)REF, R is said to (reduced) row-echelon form of A and A is said to have (R)REF
form R.

Theorem 5 (Gaussian Elimination/Row Reduction and Gauss-Jordan Elimination). We outline the

algorithm to reduce a matriz A to its REF B.



1. Locate the leftmost non-zero column (see Definition .

2. If this happens to be the top-most column, then continue. FElse, swap the top row with the row

corresponding to the leading entry (Deﬁm'tion@ found in the previous step.

3. For each row below the top row, add a suitable multiple so that all leading entries below the leading

entry of the top row equals zero.

4. From the second row onwards, repeat algorithm from step 1 applied to the submatrix until REF is

obtained.
To further get a RREF from REF obtained,

5. Multiply a suitable constant to each row so that all the leading entries become one.

6. From the bottom row onwards, add suitable multiples of each row such that all rows above the

leading entries at pivot columns (Deﬁmtz'on@) are all zero.

Steps 1 — 4 are known as Gaussian Elimination. Obtaining the RREF via Steps 1 — 6 is known as

Gauss-Jordan elimination.
Exercise 5. Obtain the RREF of the following augmented matriz

0 0 2 4 2i8
1 2 4 5 3:-9

-2 -4 -5 -4 3.6

via Gauss-Jordan Elimination (see Theorem @

Proof. Recall the notations for EROs (see Definition [L0). We perform the following steps;

1 2 4 5 3i-9
0 0 2 4 208 Ry < Ro,
-2 -4 -5 —4 3! 6 |
(1 2 4 5 31 -9 ]
00242 8 Ry +2- Ry,
|00 3 6 912
[1 2 4 5 31 -9 ] ;
00242 8 R — 5 Ra,
L0 0 0 0 6;—24
(1 2 45 31-9] X X
00 1 2 134 §R2, 6R37
(00 0 0 1}-4
(1 2 4 5 0! 3 ]
001208 Ry—1-Rs, Ri—3-Rs,
[0 0 0 0 1;—4
120 -3 0i-29
001 2 0f8 Ry —4- Ry.
000 0 1;—4

|

lwe thank reader Irena for the correction of errata in the Gaussian Elimination workings.

(24)

(25)



Result 2 (REF and their Interpretations for Solution Sets). Consider the REF (Alb) augmented matriz
form (see Definition @ Note that every matrix has a uniqgue RREF but can have many different REFs.
If a linear system is not consistent (Definition @, then the last column of the REF form of the augmented
matriz is a pivot column. In other words, there will be a row representing an equation where Y. O0x; = c,
but ¢ # 0. There is no solution to this linear system. A consistent linear system has a unique solution
if except the last column b, every column is a pivot column. This system has as many variables in the
linear system as the number of nonzero rows in the REF. If there exists a non-pivot column in the REF
that is not the last one (b), then this consistent linear system has infinitely many solutions. This linear

system has number of variables greater than the number of non-zero rows in the REF.

Note that when solving for linear systems in which the contents are unknown constants, then we need

to be careful about performing illegal row operations. That is, assume an augmented matrix
a 1l 0ia
11 11 (30)
01 aib

and in order to make the second row leading entry 0, we would perhaps like to perform Ry — %Rl.
However, we do not know that a # 0. In this case, we can consider either first swapping the first and

second row and progressing, or perform a by-case method.

3.1.1.4 Homogeneous Linear Systems

Definition 18 (Homogeneous Linear Systems). A linear system (Definition[18) is homogeneous (HLS)
if it has augmented matriz representation (A|b) where b =0 and all constants a;;, € R,¥i € [m],Vj € [n].

See that the HLS is always satisfied by z; = 0,7 € [n] and we call this the trivial (sometimes, zero)

solution. A non-trivial solution is any other solution that is not trivial.

Exercise 6. See that in the zy-plane, the equations

ax+by = 0, (31)
asx +by = 0 (32)

where ay,b1 not both zero and as,bs not both zero each represent straight lines through the origin, The
system has only the trivial solution when the two equations are not the same line, otherwise they have
infinitely many solutions. In the xyz-space, a system of two such linear equations passing through the
origin always has infinitely many (non-trivial) solutions in addition to the trivial one, since they are

either the same plane or intersect at a line passing through the origin at (0,0,0).

Lemma 2. A HLS (Definition @ has either only the trivial solution or infinitely many solutions in

addition to the trivial solution. A HLS with more unknowns than equations has infinitely many solutions.

Proof. The first assertion is trivial since the zero solution satisfies it. The second assertion follows
from considering the REF of the augmented matrix representation of a HLS with more unknowns than
equations, then apply Result O

Exercise 7. For a HLS Ax = 0 (Definition @ with non-zero solution, show that the system Ax = b

has either no solution or infinitely many solutions.



Proof. By Theorem [2] a HLS system has no solution, one solution or infinite solutions. But suppose
there is some solution u s.t. Au = b. Let v be non-zero solution for the HLS s.t. Av =0, v # 0. Then
A(u+v) = Au+ Av =b+0 = b, so u+w is solution and u+v # u. But by Lemma the solution space
for Az = 0 must have infinitely many vectors if such a v exists. It follows Az = b has infinitely many
solutions if Ju s.t Au =b. O

3.1.2 Matrices

We formally defined augmented matrices in Definition 0] In the earlier theorems, we also referred to

generalized matrix representations of numbers. We provide formal definition here.

Definition 19 (Matrix). A matriz is a rectangular array (or array of arrays) of numbers. The numbers
are called entries. The size of a matriz is given by the rectangle’s sides, and we say a matriz A is m X n
for m rows and n column matriz. We can denote the entry at the i-th row and j-th coordinate by writing

Agijy = a;j. This is often represented

ail a12 A1n
a1 @22 a2n

A= , (33)
Am1 Am2 ° - Amn

and for brevity we also denote this A = (a;;)mxn, and sometimes we drop the size all together and write
A = (aij),

Definition 20. For brevity, given a matriz A (Deﬁnition@) we refer to its size by using the notation
nrows(A) and ncols(A) to indicate the number of rows in A and number of columns in A respectively.

That is, A is a matriz size nrows(A) x ncols(A).

Definition 21 (Column, Row Matrices/Vectors). A column matriz (vector) is a matriz with only a

single column. A row matriz (vector) is a matrix with only one row.

Definition 22 (Square Matrix). A square matriz is a matriz (Deﬁnition@) that is square (number of

rows is equivalent to the number of rows). We say Anxn square matrix is of order n.

Definition 23 (Diagonal Matrix). A square matriz A of order n (Definition @) is diagonal matriz if

all entries that are not along the diagonal are zero. That is,
a;; =0 when i # j. (34)

Definition 24 (Scalar Matrix). A diagonal matriz (Deﬁnitz'on is scalar matriz if all diagonal entries

are the same, that is
0 i#j
aij = { .. (35)
c =17
for some constant ¢ € R.

Definition 25 (Identity Matrix). Scalar matriz (Definition is identity matriz if the diagonals are
all one, that is c = 1. We often denote this as 1. If the size needs to be specified, we add subscript 1,

to indicate order n.

10



Definition 26 (Zero Matrix). Arbitrary matrix m X n is zero matriz if all entries are zero.
Definition 27 (Symmetric Matrix). A square matriz A (Deﬁnition@) is symmetric if a;; = aj; for all
i, € [n].

Definition 28 (Triangular Matrix). A square matriz A (Deﬁnition@) is upper triangular if a;; = 0
whenever i > j, and is lower triangular if a;; = 0 whenever i < j.

3.1.2.1 Operations on Matrices

Definition 29 (Matrix Addition, Subtraction and Scalars). The following are defined for operations on

matrices:
1. Scalar Multiplication: cA = (ca;j).
2. Matriz addition: A+ B = (a;; + bsj).
3. Matriz subtraction: A — B = (a;; — bsj). E| We denote —A = —1-A.

Definition 30 (Matrix Equality). To show that two matrices A, B are equal, we have to show their their

size is the same, and their entries a;; = byj Vi,Vj.

Theorem 6 (Properties of Matrix Operators). Define matrices A, B, C' of the same size and let ¢,d € R.
Then the following properties hold:

1. Commutativity: A+ B= B+ A.

2. Associativity: A+ (B+C)=(A+B)+C.
3. Linearity: ¢c(A+ B) = cA+ ¢B.

4. Linearity: (c+ d)A = cA+ dA.

5. ¢(dA) = (cd)A = d(cA).

6. A+0=0+A=A.

7. A-—A=0.

8 0A=0.

Proof. To show equality of matrices, we have to show their size is the same and that their corresponding
entries match (see Definition . The proofs for the above theorems are rather trivial, and we show
the associativity law (other proofs are of the same stripe). Proof of associativity: Let A = (a;;), B =
(@i;),C = (a;j), then

A+ (B+C) (aij) + (B+O) (36)
(aij) + (bij + cij) (37)
= (i +bij) + (ci5) (38)
(A+ B) + (cij) (39)
(A+ B)+C. (40)
That is, we rely on the associativity on addition of real numbers to prove the associativity on addition

of matrices. Finally, see that their sizes match. O

2note that the matrix subtraction can be defined as the addition of a matrix A with a matrix B that has first been

operated on a by scalar multiplication of ¢ = —1.

11



Definition 31 (Matrix Multiplication). For matrices A = (aij)mxp; B = (bij)pxn, the matriz product
AB is defined to be the m X n matriz s.t.

p
C=AxB= (Cij)an = Zaikbkj- (41)
k=1

The matriz multiplication AB is only possible when ncols(A) = nrows(B).
Exercise 8. Show that matriz multiplication (Definition s not commutative.

Proof. Prove by counterexample. For matrices

A(l 0>, B<1 2>, @)
2 3 30

see that

Since the matrix multiplication is not commutative, when describing in words, we say that AB is the

pre-multiplication of A to B and BA as the post-multiplication of A to B to prevent ambiguity.

Theorem 7 (Properties of Matrix Multiplication). Matriz multiplication (Definition satisfies the
following properties (we assume trivially that the size of the matrices are appropriate such that the matriz

multiplication is legitimate) :
1. Associativity: A(BC) = (AB)C.
2. Distributivity: A(By + Bs) = ABy + ABs.
3. ¢(AB) = (cA)B = A(cB).
4. A0 =0, and 0A = 0.
5. For identity matriz (Deﬁnition of appropriate size ,A1l = 1A = A.

Proof. Proof of the asserted statements follow directly form their definitions of matrices and matrix
multiplications (Definitions and computing the resulting entries componentwise via the laws of
algebra on real numbers (additionally, we also have to show that the sizes on the LHS and RHS are

matching). O

Definition 32 (Powers of Square Matrices). For square matriz A and natural number n > 0, the power
of A can be written
1 ifn=0,
At = AA--- A ifn>1. (44)
(S ——4

n number of times

By associativity, A™A" = A™*". By non-commutativity (AB)" # A"B". See Theorem 7| for

statements on properties of matrix multiplications.

Exercise 9. Show that if AB = BA, then (AB)* = A*BF.

12



Proof. We proof by induction. Base case is when k = 1, so (AB)! = AB = A'B!. This statement is
trivial. Now assume (AB)? = A7 B for j < k. Then (AB)’*! = (AB)? AB = A7 BI AB. Define the swap
operator ¢ : BA — AB, then apply 17 (B7A) to get AB/. Then we have A%J(B’A)B = AAB’B =
AiT1pi+1 and by induction we are done. O

We may express rows, columns and even submatrices of a matrix by grouping together different

entities. Here we show some examples.

1 2 3
Exercise 10 (Expressing Matrices as Block Matrices of Rows and Columns). For matriz A = (4 5 6> ;

1

B=1] 2 3], we may write

See that the following relationships hold by direct computation

AB = <A61 Ab2> - (Zlg > . (48)

Exercise 11 (Block Matrix Operations). Let A be m x n matriz, and B, Bs be n X p, n X ¢ matrices,
C1,C5 be r x m matrices, and Dy, Dy be s X m,t X m matrices respectively. See which of the following

block operations are valid:

1. A(By B.)= (4B 4B,).
2. (01 CQ) A= (ClA CQA)
D D
o (Pr)a= (2.
Do D5 A
Proof. Refer to Exercise [10| for operations on matrix blocks written as rows and columns.
1. If we write By — <b1 bp) By = (c1 cq). Then

A(Br By)=(Aby - Ab, Aci o Acy) (49)
and the relation is valid.

2. The matrix sizes do not permit a valid matrix operation.

13



dy f1

3. Ifwelet Dy =1|.--|,Dy = , then
ds ft
dy
D ds
Y = . (50)
Dy f1
It
Then we have
diA
D dsA
A= (51)
D, f14
JiA

and the relation is valid.

O

Recall the augmented matrix representation of linear systems (see Definition E[) We may define an

equivalent form.
Definition 33 (Matrix Representation of Linear System). For system of linear equations
VJ S [m], a;121 + A;j2T2 =+ AjnTyn = bj, (52)

we may represent the linear system by matriz multiplication

a1 ai2 - A1n T1 b1
azi Qg - Qg Ty | | b2 (53)
Am1 Am?2 tee Amn T bm

A T b

Then we say that A is the coefficient matriz, x is the variable matriz and that b is the constant matriz

for the linear system specified. A solution to the linear system is a n X 1 column matrix

Uy
u
wu=| " (54)
Un
where Au = b. If we treat A = (Cl cy v cn) where ¢; represents the i-th column of A, then we
may write
n
C1T1 + CoTo + -y = Z c;jx; =b. (55)
j=1

That is, the constant matrixz is a linear combination of the columns of the coefficient matrix, where the

weights are determined via the variable matriz.
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Definition 34 (Matrix Transpose). For matrizc A = (a;ij)mxn, the matriz transpose of A is written

A = (a;j)nxm where the entry agj = aj;.

See that the rows of A are the columns of A" and vice versa. See that a square matrix A is symmetric

(Definition iff A=A
Theorem 8 (Properties of the Matrix Transpose). The matrixz transpose follows the following properties
1. (A7) = A.
2. (A+B)=A"+PB.
3. For c e R, (cA) =cA’.
4. (AB) = B'A’.

Proof. The proof of the first three parts are fairly straightforward by direct computation of the algebraic
properties of real numbers that follow from their Definitions. We show the last assertion. Denote the sizes
of matrix A to be m X n and that of B to be n x p so that the matrix multiplications (Definition are
defined. Then AB has size m x p, so that its transpose has size p x m. B’ has size p xn, A’ has size n x m,
so B'A’ has size p x m. We show they are componentwise equivalent. Since (AB);; = Y.,  a;ubij. Then
(AB)i; = 32 ajibi. On the other hand, we have Aj; = aji, Bj; = bji, so that (B'A")y; = >/ bja); =
Z? bi;aj1. We have showed that the corresponding entries are the same. O

3.1.2.2 Invertibility of Matrices

Definition 35 (Invertibility of Square Matrix). Let A be square matriz of order n (Definition @), then
we say that A is invertible if 3 square matrix B of order n s.t. AB = 1,, = BA. The matrix B is said
to be the inverse of A. We denote this A~'. There is no ambiguity; we shall see that the inverse of a

matriz is unique (Theorem @

Definition 36 (Singularity of Square Matrix). A matriz that does not have an inverse (Deﬁmtion

is said to be singular.

10
Exercise 12. Show that the matriz A = (1 O) 1s singular.

b
Proof. Suppose not. Then let the inverse be B = <a d). Then by Deﬁnition we have
c

1 1
BA—1— 0 _(a b 0 _ (@ +b 0 . (56)
0 1 c d 1 0 c+d O
Then 1 = 0. Contradiction. O

Theorem 9 (Uniqueness of Inverses). If B,C are inverses of square matriz A, then B = C.

Proof. Write

AB=1 = CAB=C1 = 1B=C = B=C. (57)
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Exercise 13 (Conditions for Invertibility of Square Matrix Order Two). In the case for square matriz

(Z Z) . (58)

State the conditions for invertibility and find the matriz inverse.

A of order two, denote

_d_ _=b_
Proof. Define B = | ad—bc adabc>, which is defined only if ad — bc # 0. We may compute directly the

—c
ad—bc ad—bc
matrices AB = BA = 1 (we show how to explicitly compute matrix inverses such as B later on). O

Theorem 10 (Properties of Matrix Inverse). Let A, B be two invertible matrices (Definition , and
c# 0,€ R. Then the following properties hold

1. cA is invertible, in particular (cA)~' — 1A71,

2. A’ is invertible, and (A")~1 = (A~1).

3. A=Y s invertible and (A~1)~1 = A.

4. AB is invertible and (AB)~! = B~tA~1L.
Proof. -

1. We can write

(cA)(EA1) = (CD AA =1, (59)
(%A*l)(cA) —(doatazn, (60)

and the result immediately follows.

2. We show this by verifying that (A=1)" is the inverse of A’, which confirms the assertion that A’ is

invertible. In particular, by properties of matrix transpose (Theorem 7 write

A(ATYY =(A71A)Y =1 =1, (61)
(A7) A =AY =1 =1. (62)

Then A’ is invertible, and the inverse is (A7)’
3. See that A71A =1, AA~! = 1 and by definition of inverse (Definition , the result follows.

4. Since A, B invertible, write
(AB)(B™'A ™) = ABB™'A ' = A1A7 ' = AA = 1. (63)
Also
(B~'A™H)(AB) =1 (64)

by similar reasoning.
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Definition 37 (Negative Powers of a Square Matrix). ?? For an invertible matriz A, we may define
negalive powers for a square matriz given n € ZT as the matriz power (Definition @) of the inverse.
That 1is,

AT = (ATH™ (65)
See that if A™ is invertible, then (A")™1 = A=" for any n € Z.

3.1.2.3 Elementary Matrices

One may notice that the elementary row operations (see Definition may be considered as the pre-

multiplication of some matrix to the matrix being operated on. For instance, see that

0 2 1 0 2 3
A=|2 -1 3 6|®B=(4 —2 6 12|, (66)
4 1 4 4 0
and see that
10 0
02 0|lA=8B. (67)
00 1
E

In particular, the ERO kR; (Definition may be performed by the pre-multiplication of matrix Ej,
where Ej, is a diagonal matrix (Definition of order nrows(A), where all the entries along the diagonal
are one except for the i-th row, where the entry is k. If & # 0, and since performing kR;, %Ri in sequence
gives us back the same matrix - see that the Ej is invertible and that F ! is the diagonal matrix with
all ones along the diagonal except for % entry on the i-th row.

Next, observe the ERO R; ++ R; (see Definition on the following instance:

1 0 1 0 2 3
A=|2 -1 3 6|™8%B=[1 4 4 o], (68)
1 4 2 -1 3 6
and see that
1 0 0
0 0 1|A=8B (69)
01 0
———
E>

In particular, the ERO R; ++ R; (Definition may be performed by the pre-multiplication of matrix
E,, where E is a matrix that began with an identity matrix (Definition of order nrows(A) and has
gone through precisely the row swap R; ++ R;. See that swapping rows i and j and then swapping again
rows i and j gives us back the original matrix. Then E, = E; .

Last but not least, observe the ERO R; + kR; (see Definition on the following instance:

R3+2R
s p

W = =
= e O
o = N
S O W
—
\]
o
=
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and see that

A

_— o O
I
s
—~
N}
=
~—

1
0
2

S = O

—_————
Es3

In particular, the ERO R; + kR; (Definition may be performed by the pre-multiplication of matrix
E;, where Ej is a matrix that began with an identity matrix (Definition of order nrows(A) and has
gone through precisely the row addition R; + kR;. As before, the (triangular, Definition matrix E;

is invertible and E;” ! represents the row-swap operation R; — kR;.

Definition 38 (Elementary Matrix). A square matriz (Deﬁm’tion@) that can be obtained from an iden-
tity matriz (Deﬁnition from a single elementary row operation (Deﬁnition@) is called an elementary

matrix.

We saw that all elementary matrices (Definition are invertible, and their inverses are also elemen-

tary matrices. The discussions thus far allow us to arrive at the following result:

Lemma 3. The EROs (Deﬁm'tion@) performed on arbitrary matrices correspond precisely to the pre-
multiplication of an elementary matriz (Deﬁm’tion@) obtained from performing the ERO on the identity

matriz (Definition [25).

For a series of EROs applied in sequence O1, O, - - - O, (Definition applied on A, s.t.

A9% . %P (72)
and their corresponding elementary matrices E1, - -- , Fy, see that the relation
EE, 1---E1A=B (73)

must hold. By the invertibility, we have the relation
A=E'Ey - E'B. (74)
Exercise 14. Prove the solution-set equivalency asserted in Theorem [J}

Proof. We show that if there are two row equivalent (Definition augmented matrices (Definition E[)
(A|b), (C|d), then the linear systems Az = b, Cx = d share solution set. By Lemma [3] see that 3E s.t.

(Cld) = E(AJb) = (EA|ED), (75)
which is valid by Exercise Then if Au = b (that is if u is solution), then
Au=b = FAu=FEb = Cu=d. (76)
On the other hand, if Cv = d, then
Cv=d = FAv=FEb — E'EAv=E"'Eb = TAv=Tb = Av =0, (77)
They share solution set. O

Theorem 11 (Invertibility of Square Matrices, 1). If A is square matriz order n, then the following

statements are equivalent:
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1. A is invertible.

2. Ax =0 has only the trivial solution.

3. RREF of A is identity 1 matrix.

4. A can be expressed as II}E;, where E; are elementary matrices.

Proof. Tt turns out that this theorem shows an easy way to compute the inverses of an invertible matrix
A. To show

(i) 1 = 2: if Az =0, then
r=Tz=A"1Az=A"10=0, (78)
where the last step follows from Theorem

(i) 2 = 3: Ax = 0 is the only trivial solution. Since A is square, nrows(A) = ncols(A), then by
Lemma [2 the RREF of A of (A]0) has no zero rows. By definition of RREF (Definition [I7)), the
RREF of A is identity (Definition [25)).

(iii) 3 = 4: Since RREF of A is 1, by Lemma 3E;,i € [k] s.t.
EnEp 1 FyA=1. (79)
Then A = (Ey--- Ey)7'1, and by inverse properties, Theorem we have
A=E" BN (80)
(iv) 4 = 1: Since A is product of invertible elementary matrices, A is invertible by Theorem

O

Theorem 12 (Cancellation Law). Let A be an invertible matriz (Deﬁnitz’on of order m, then the
following properties hold:

1. ABl = AB2 = By = Bs.
2. C1tA=0A — C1 =0,.
This does not hold for matrix A when it is non-singular.

Proof. For first the part,
ABl = ABQ — ABl — ABQ =0 = A(Bl — BQ) =0. (81)

Then since A is invertible, the HLS has only trivial solution by Theorem so By — By = 0 and it
follows that By = By. For part 2, write

(Cl — CQ)A =0 = (Cl — CQ)AA_l =0 = (Cl — CQ)IL = 0, (82)

and the result follows. O
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We may use the discussions in Theorem [[1]to compute the matrix inverse. For A satisfying By, -+ E1 A =

1, see that Ej, --- By = A~! by the post multiplication of A~! to both the RHS and LHS. Recall this is

valid, since we are guaranteed the invertibility of A. Furthermore, this is unique (Theorem E[) Consider
the n x 2n matrix (A|1,). Then

Ey---E1(Al) = (Eg---FEiA|E,---E1) (83)

= (A7), (84)

That is, to the augmented matrix (A|1), if we perform Gauss-Jordan elimination (see Theorem [5)) and

get RREF 1 on the LHS of |, the RHS is A~!. Otherwise, A4 is singular and does not have an inverse.

The following theorem shows us that given square matrices A, B - when we are to verify A~! = B, we
are only required to check one of AB =1 or BA=1.

Theorem 13. Let A, B be square matriz order n. If AB = 1, then A, B are both invertible and
Al =B, B~ = A, BA =1. (85)
Proof. Consider HLS (Definition Bz = 0. If Bu =0, then
ABu=Iu = A0=u = 0=u. (86)

Then Bz = 0 only has the trivial solution. By Theorem B is invertible. Since B is invertible:

AB=1 = ABB'=1B"' = Al=B"' = A=B"1 (87)
So A is invertible by Theorem [11]and A~* = (B~!)"! = B, BA=BB~! = 1. O

Exercise 15. For square matriz A, given A> —3A — 61 = 0, show that A is invertible.
Proof. Since we may write

A(A—31) = A% - 3A1 = A® - 34 =61, (88)
then A [§(A —31)] =1, and it follows that A is invertible from Theorem O

Theorem 14 (Singularity of Matrix Products). Let A, B be two square matrices of order n. Then if A
is singular, AB, BA are both singular (see Definition .

Proof. Suppose not. Then AB is invertible, and let C' = (AB)~!. Then we may write
ABC =1, (89)
then A is invertible since A=! = BC by Theorem This is contradiction. O

Theorem 15 (Elementary Column Operations). See from Lemma @ that the pre-multiplication of an
elementary matriz to matriv A is equivalent to doing an ERO on Apxm matriz. Let Ey, Es, E; be
elementary matrices corresponding to kR;, R; <+ R;, R; + kR, respectively (see Definition @) Then, the

post multiplication of the matrices Ey, Es, E; correspond to

1. Multiplying the i-th column of A by k.
2. Swap columns i,j in A.
3. Add k times j-th column of A to i-th column of A

respectively and let these be known collectively as elementary column operations (ECOs). They shall be
denoted kC;, C; < Cj, C; + k‘CJ
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3.1.2.4 Matrix Determinants

It turns out that whether a square matrix is invertible (Definition depends on a quantity of the

matrix known as the determinant. We define this recursively.

Definition 39 (Determinants and Cofactors). For square matriz A order n, let M;; be an (n—1) x (n—1)
square matriz obtained from A by deleting the i-th and j-th column. Then the determinant of A is defined

as

det(A) — Zf (g :)
a 41 1 a’124112 alnil n Z} n> 17

where A;; = (—1)""det(M;;). The number A;j is known as the ij-cofactor of A. This method of recur-
sively computing matriz determinants are known as cofactor expansion. Often, we adopt the equivalent

notations for determinant of A:

air ai2 0 Qip
d@t(A) _ a1 a2 - a2n (91>
Gpl  Ap2 T Apn

Exercise 16 (Cofactor Expansion Examples). Here we show some instances of co-factor expansion.

When the matriz is 2 X 2, then we have a general form

A= (Z Cbl) . (92)

Then see that the determinant by cofactor expansion

a- (1) det(d) +b- (—1)2det(c) = ad — be. (93)
-3 -2 4
Then for larger matrices, we may use these sub-results. For instance, the determinant for B= | 4 3 1
0 2 4
via cofactor expansion is obtained
3 1 4 1 4 3
det(B) = (—3) 5 4 - (-2) 0 4 0 9 =-33-4—-1-2)4+2(4-4—1-0)+4(4-2—-3-0)=34.(94)

Result 3 (Cofactor Expansion Invariance). For square matriz A order n, det(A) (Definition [39) may

be found via cofactor expansion along any row or any column.

Theorem 16 (Cofactor Expansion of Triangular Matrices). For triangular matriz A, the determinant

A is equal to the product of diagonal entries of A.

Proof. By definition of triangular matrices (Deﬁnition, both the upper triangular and lower triangular
has a row that is all zeros except for possibly a singly entry (the diagonal itself). That is, an upper

triangular takes general form

aix aiz -+ QGin
0 - ”

A= Q22 az (95)
0 0 Ann
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Additionally, since matrix is square, cofactor expansion along the last row, last entry has the term
(—1)"% = 1. By Result [3| see that if we apply recursively the cofactor expansion along the last row,
we obtain just the product of the diagonal entries. A similar reasoning is applied if the matrix is lower

triangular. |
See that the determinant of 1 is one by Theorem
Theorem 17 (Determinant of Matrix Transpose). For square matriz A of order n, det(A) = det(A’).

Proof. We prove by induction. The base case is for a matrix containing a single scalar value. This is
trivially true, since the transpose of a matrix 1 x 1 is itself. Next, assume det(A) = det(A’) for any
square matrix A order k. We show this holds for (k + 1) x (k + 1) matrix. In particular, by cofactor
expansion along the first row of A, obtain

det(A) = (—1)""aydet(My;). (96)
Next perform, cofactor expansion along the first column of A’, then

det(A") = zn:(—l)lﬂaudet(M{i). (97)

By induction, det(A) = det(A’) since det(M;;) = det(M;). O
Theorem 18 (Determinant of Repeated Row/Column Matrix). The determinant of a square matriz

with two identical rows is zero. The determinant of a square matriz with two identical columns is zero.

a b
Proof. We prove by induction. The base case is for matrix A size 2 x 2. For matrix A = , by
a

Exercise [L6] we have det(A) = ab — ab = 0. Assume that for k < n, det(A) size k x k with repeated row
is zero. Then consider a (k4 1) x (k+ 1) matrix with row ¢ equivalent to row j, ¢ # j. Then by cofactor

expansion along some row m that is neither ¢ nor j, we have
det(A) = amlAml 4+ 4 am,k+1Am,k+1 (98)

Apy is the cofactor (—1)"*"det(M,,,), which has identical rows and by inductive assumption has de-
terminant zero. Then det(A) = 0 and we are done. Since det(A) = det(A’), a square matrix with two

identical columns has transpose with two identical rows and the result follows. O

Theorem 19. Recall the notations for EROs (Definition @) and correspondence to their elementary

matrices (Lemma @ Let A be square matriz, and
(i) B be a square matriz obtained by some ERO kR;. Then, det(B) = kdet(A).
(i1) B be a square matriz obtained by some ERO R; <> R;. Then, det(B) = —det(A).
(11i) B be a square matriz obtained by some ERO R; + kR;. Then, det(B) = det(A).
(iv) E be some elementary matriz with size nrows(A) x nrows(A). Then det(EA) = det(F)det(A).

It turns out that this is quite useful because the determinants of elementary matrices are fairly easy to
compute. Only the elementary matriz corresponding to the swap operation is a non-triangular matriz
(Definition @/, but even the swap operation has corresponding elementary matriz where each sub-square

matriz has row/column with only a single scalar entry of one and the rest zero.
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Proof. We do not prove this theorem but this may be obtained via the rather mechanical cofactor
expansion and definition of matrix determinants (Definition . O

Theorem 20. Recall the notations for CROs (Definition and correspondence to their elementary

matrices. Let A be square matriz, and
(i) B be a square matriz obtained by some CRO kC;. Then, det(B) = kdet(A).
(it) B be a square matriz obtained by some CRO C; <+ C;. Then, det(B) = —det(A).
(1ii) B be a square matriz obtained by some CRO C; + kC;. Then, det(B) = det(A).
(iv) E be some elementary matriz with size nrows(A) x nrows(A). Then det(AE) = det(F)det(A).
Theorem 21 (Determinants and Invertibility). Square matriz A is invertible iff det(A) # 0.

Proof. For square matrix A we may write B = Ej--- E1 A, where each E; is elementary matrix and
B is RREF. By Theorem det(B) = det(A)1¥_,det(E;). By Theorem B =1, and det(B) = 1.
Then det(A) # 0 since /3is.t. det(E;) = 0. If A is singular, then B has zero row (Definition [L3).
By cofactor expansion (Theorem [3)) along the zero row, det(B) = 0, then det(A) = 0 since again,
Ai s.t. det(E;) = 0. O

Theorem 22. For square matrix A, B order n and ¢ € R, the following hold:
1. det(cA) = c"det(A),
2. det(AB) = det(A)det(B),
3. If A is invertible, then det(A™') = m.

Proof. -

1. This follows from Theorem [19] and seeing that cA is multiplying each of the n rows by c.

2. If A is singular, then AB is singular by Theorem Then det(AB) = det(A)det(B) = 0. Other-
wise, matrix A may be represented by product of elementary matrices s.t.

det(AB) = det(F) - - - ExB) = det(B)ITF_,det(E;) = det(B)det(A). (99)

3. Follows since det(A)det(A™!) = det(AA™!) = det(1) = 1. The first equality follows from part 2.
O

Definition 40 (Classical Adjoint). Let A be square matrixz order n. Then the (classical) adjoint of A is

n X n matrix

All A12 to Aln
adj(A)= | 7 7 o (100)
Anl An2 e Ann

where A;; is (i,j) cofactor of A (Definition @)
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Theorem 23 (Inverse by Adjoint). Let A be square matriz, then if A is invertible, we have

1
Al = dj(A). 101
det ()" j(A) (101)
Proof. Let B = A-adj(A), then
bij = G,“Allj + aigA/Zj 4+ .- (lmA;j (102)
= aﬂAjl + aizAjg + - amAjn. (103)

By definition of cofactor expansion (see Definition [39| and Theorem , see that

By Equation see that when ¢ # j, then b;; is the cofactor expansion along the row j of matrix A
where the entries of row i, j are both a;1, a9, - - a;,. Then by Theorem @ bij =0if ¢ # j. Then

A adj(A) = det(A)l = A-adj(A) = 1. (105)

1
det(A)
Then the result follows. O
Theorem 24 (Cramer’s Rule). Suppose Ax = b is linear system (Definition @, where A is square matriz

order n. Then if A; is the matriz obtained from replacing i-th column of A by b, and if A is invertible,

then the system has unique solution

det(Al)
- 1 det(Ag)
=G || (106)
det(A,)
Since
_ _ a1y AN
Ar=bz=A""b= det(A)ad‘](A) b, (107)
then

b1 Ay b A+ + by An det(Ay) (108)
= det(A)  det(A)”

Zg
Exercise 17. For Ay, xn, Bnxp matrices, if Bx = 0 has infinitely many solutions, how many solutions

does ABx = 0 have? What about if Bx = 0 has only the trivial solution?

Proof. Suppose Bx = 0 has infinitely many solutions, and let this solution space be S. See that Vs € S,
ABs = A0 = 0. There are at least as many solutions as Bz, and this is in fact infinitely many. On other

hand, we cannot make comments about the solutions to ABx = 0 when Bx = 0 only has trivial solution.

10 10 10
For instance, if B = (O 1>7 the cases for matrix A = (1 O) and A = (0 O) give rise to a linear

system with trivial solution and infinitely many solutions respectively.

Definition 41 (Trace). For square matriz A of order n, the matriz trace denoted tr(A) is the sum of

entries along the diagonals of A. For A, B square matriz both of order n, Cpyxn, Dnxm, we have

1. that

tr(A+ B) =tr(A) + tr(B). (109)
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2. that tr(cA) = ctr(A).
3. that tr(CD) = tr(DC).
4. that AA,B s.t. AB— BA=1.

Proof. The first two properties are easy to proof by definitions of trace and matrix. For the third

statement, see that

n
(CD)yi = Zcijdjia (110)
J
m n
tr(CD) = chijdji (111)
i g
n m
= DD dci;. (112)
i
See that the RHS is precisely ¢r(DC). Lastly, since tr(AB — BA) = tr(AB) — tr(BA) = tr(AB) —
tr(AB) = 0 by the earlier parts and ¢r(1,,) = n, it cannot be that AB — BA = 1. O
Exercise 18 (Orthogonal Matrices). A square matriz is an orthogonal matriz if
AA =1 =A'A. (113)
Suppose A, B is square matriz order n and orthogonal, then show AB is orthogonal.

Proof. See that (by Theorem @

AB(AB) = ABB'A' = A1A’ = AA" =1, (114)

and that
(AB)AB = B'A’/AB=B'1B=B'B=1. (115)
O

Orthogonal matrices are treated in Section [3.1.5.3

Exercise 19 (Nilponent Matrices). A square matriz is a nilpotent matriz if 3k € Z+ s.t. A¥ = 0. Let
A, B be square matrices order n, and that AB = BA with nilpotent matriz A. Show that AB is nilpotent.
Show that we require the condition AB # BA.

Proof. Let k be some constant s.t. A¥ = 0. Then by Exercise [9] we have

(AB)F = A*B* — 0B* =0, (116)

0 1 0 0
so AB is nilpotent. No - we may prove by simple counterexample, say A = (0 0) ,B= (1 0). O

Exercise 20. Show that for diagonal matriz A, the power of the diagonal matriz A*F is diagonal matriz
with entry ak,, for i € [nrows(A)].

Proof. Obtain this by simply writing out the mathematical induction proof. O

Exercise 21. Prove or disprove the following:
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1. If A, B diagonal matrices of same size, BA = BA.
2. If A is square matriz, and A2 =0, then A= 0.
3. If A is matriz s.t. AA' =0, A=0.
4. A, B invertible = A + B invertible.
5. A, B singular = A+ B singular.
Proof. -

1. This statement is true. See that AB;; = as;b;; and BA;; = bijas;.

0 1
2. This statement is false by counterexample A = <0 O) .

3. This statement is true. For matrix A size m xn, AA’ is square matrix m x m. AA}; = Y7 a;;a);; =

Z;L a?j and this implies that if AA’ =0, a;; = 0 for all values ¢, j. A must be zero matrix.

4. This statement is false by counterexample:

A_<1 O), B_(l 0). (117)
0 1 0 -1

5. This statement is false by counterexample:

A:<l 0), B:<° 0). (119
0 0 0 1

O
Exercise 22. Let A be square matriz. Then
1. Show that if A2 =0, then 1 — A is invertible. Find the inverse.
2. Show that if A3 =0, then 1 — A is invertible. Find the inverse.
3. Find the relation at higher order powers.
Proof. -
1. Since
(1-A)(1+A4)=1-A4%=1, (119)
then 1 — A is invertible with inverse 1 + A.
2. See that
(1—-A)(1+A+A4%)=1-4%=1, (120)

so the inverse of 1 — Ais 1 + A + A2.

3. As in previous parts, the general form matrix inverse of 1 — A where A" =0 is
n—1
> oA (121)
§=0
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Exercise 23. Suppose A, B is invertible square matriz order n, and that A+ B is invertible. Then show
that A=* + B~ is invertible and find (A + B)~'.

Proof. If A + B is invertible, then the matrix (A(A + B)~!B) must be invertible. Consider the inverse
of this matrix, by Theorem [10] we have

(AA+B) !By ' =B 'Y A4 B)A ' =(B'A+1)A ' =B 1+ 471 (122)

We have effectively shown that the inverse of A=! + B~! exists and is (A(A + B)~!B). Then we may

write

A(A+B)™'B = (A4 B H! (123)
AT'AA+B)'BB™! = A A '+ B Y)Y !Bl =A+B)! (124)
and we are done. O

Exercise 24. Let A, P, D be square matrices s.t.
A=PDP™ . (125)
Show that A¥ = PD*P~1 for all k € 2+.

Proof. See that A¥ = PDP~'* PDP~!... PDP~!. Then all the adjacent P~ P is identity and we arrive

k times

at PDFpP~1. O

Exercise 25. Show that for matriz Amxn, Bnxm, and A = REF(A) with REF(A) having some zero

row, show that AB is singular.

Proof. If A R REF(A) with REF(A) having a zero row, then A = Ej--- EyREF(A) for elementary
matrices F;,i € [k], and AB = Ej, --- EyREF(A)B. It follows that AB 2 REF(A)B and since REF(A)
has zero row, by the block matrix multiplication (Exercise AB has REF(AB) where REF(AB) has
zero row. This can never be row equivalent to 1, and by Theorem AB is singular. O

Exercise 26. For matriz A, x, and m > n, see if is possible for AB to be invertible where B is matriz

size m X m.

Proof. AB will always be singular. The REF of A has at most n non-zero rows, and since m > n, REF
form of A has zero row. Then by the proof in Exercise AB must be singular. O

Exercise 27. Let A be some 2 x 2 orthogonal matriz (Definition @ Prove that

1. det(A) = £1,

2. A= (c?s(G) —sin(9)> for some 6 € R if det(A) =1,
sin(0)  cos()

3. and otherwise A = <COS(9) sm(@)>.

sin(0) cos(0)
Proof. -
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1. det(1) = det(AA") = det(A)det(A') = det(A)? = 1.

b
2. For matrix A = “ 4] if A is orthogonal, A=! = A’. Then using invertibility by adjoint
c

(Theorem [23)), we can write

a ¢ 1 d -b d -b
<b d) - det(A) (—c a) - (—c a) ’ (126)

So a = d,b = —c and by assumption a? + ¢ = ad — be. Let a = cos(),c = sin(f), the result

follows.

3. Follow part 2. with a — —d, b — c.

O
Exercise 28. Let A be invertible square matriz order n. Then
1. Show that adj(A) is invertible.
2. Find det(adj(A)),adj(A)~!
3. Show det(A) =1 = adj(adj(A)) = A.
Proof. -
1. By Theorem 23] we have
A [ ! adj(A)} 1 — [ ! A} adj(A) = 1 (127)
det(A) det(A)
by Theorem
2. By Theorem [22] since
det(1) = (d tl(A)>n det(adj(A))det(A) =1, (128)
then det(adj(A)) = det(A)"~1 and adj(A)~* det(A)
3. From the general form A [ T (A) adj(A)| =1, we can write
adj(A) [Madj(adjm))] ~1 (129)

Then by part 2, we have

adj(adj(A)) = det(adj(A))adj(A)~! = det(adj(A))#(A)A = det(A)"'det(A) ' A = det(A)" 2 A.
If det(A) = 1, then it follows that
adj(adj(A)) = A. (130)

Exercise 29. Prove or disprove the following statements.
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1. A, B square matrices of order n satisfies det(A + B) = det(A) + det(B).
2. If A is square matriz, det(A+ 1) = det(A’ + 1).
3. A, B square matrices of order n and A= PBP~ for some invertible P satisfies det(A) = det(B).
4. A, B,C square matrices of order and det(A) = det(B) satisfies det(A + C) = det(B + C).
Proof. -
1. This is false by counterexample:

A=1,, B=-1,. (131)

2. This is true, since det(A + 1) = det((A+ 1)") = det(A" 4+ 1).
3. This is true, since

det(A) = det(PBP~') = det(P)det(B)det(P~") = det(B)det(P)det(P~') = det(B) - 1. (132)

4. This is false by counterexample:

A=-1,, B=1,  C=1L,. (133)

3.1.3 Vector Spaces
3.1.3.1 Finite Euclidean Spaces

A vector may be specified by the direction of the arrow, and its length specified by its magnitude. Two
vectors are equal if the share direction and magnitude. If we denote a length of the vector u by ||ul|,
then clearly the length of a scaled vector cu must be c|lul|. The geometrical interpretations for vectors
are somewhat elusive past three dimensional spaces, however, it should be noted that the theorems
constructed in spaces of dimensions lower than three may be extended to higher finite dimensions, even

if it may not be visualized.

Definition 42 (Vector and Coordinates). A n-vector or ordered n-tuple of real numbers takes form
(’1,61,11/2,"' 7u77,) (134)
where u; € R,i € [n]. The i-th component or coordinate of a vector is the entry u;.

Definition 43 (Vector Terminologies). Two n-vectors u,v are equal if ¥i € [n], u; = v;. The vector
w=u+v is s.t Vi € [n],w; = u; +v;. Scalar multiple of vector is the operation for some ¢ € R,w = cu
s.t. Vi € [n],w; = cu;. The negative of vector u is the scalar multiple of vector where ¢ = —1. The
subtraction of vector v from u is the addition of vector u to negative of vector v. A zero vector is one in
which ¥i € [n],u; = 0.

See that we may identify vectors as special cases of matrices, that is either the row vector or column
vector (Definition [21)).

Theorem 25 (Vector Operations). For n-vector u,v,w, the following hold:
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1. u+v=v+u,

2. u+ (v+w) = (u+v) +w,
S u+0=u=0+u,

4. v+ (—u) =0,

5. c(du) = (ed)u,

6. c(u+v)=cu+cv,

7. (e+d)u = cu + du,

8. lu=u.

Proof. These properties follow from their definitions. Otherwise, see that vectors are matrices, and use
the same result on matrices (i.e. Theorem |7 Definition [29| and Definition . O

We give formal definitions for Euclidean spaces.

Definition 44 (Euclidean Space). A Fuclidean space is the set of all n-vectors of real numbers. This is

denoted R™. When n =1, we usually just write R. For any element u € R™, u is n-vector.
See that the solution set of a linear system (Definition [5)) must be a subset of the Euclidean space.

Exercise 30 (Expressions for Geometric Objects in the Euclidean Space). We show implicit and explicit

expressions for objects in low dimensional spaces.
1. See that a line in R? may be represented (implicitly) by the set notation
{(z,y)laz + by = c}, (135)

where a,b,c € R, and it is not the case that both a,b are zero. This may (explicitly) also be written

as

— bt
{ (C ab ,t) It € ]R} if a £ 0, or equivalently (136)

{(t,c_bat> |teR} ifb#0. (137)

2. A plane in R? may be expressed

{(z,y,2)|ax + by + cz = d} (138)

where a,b,c € R not all zero and d € R. We may also write explicitly as any of the equivalent

{<d_bS_Ct7s,t) |s,teR} a#0, (139)

forms

a

{<87d_a8_0t7t> |s,t ER}
b
d— as — bt
{<s,t, as) |s,t € R} c#0. (141)

c

b0, (140)
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3. A line in R® may be represented by the explicit set notation
{(ap + at, b + bt, ¢y + ct|t € R} = {(ao, by, co) + t(a,b,c)|t € R}, (142)
where a, b, ¢, ag, by, co € R, and not all a,b, c are zero.
Definition 45 (Set Cardinality). For finite set S, the number of elements in the set (cardinality) is
denoted |S]|.
3.1.3.2 Linear Spans

Definition 46 (Linear Combination). Let u;,4 € [k] be vectors in R™, then Ve, € R, i € [k], the vector

k
> e (143)

is said to be linear combination of the vectors u;,i € [k].

Definition 47 (e;). Denote vectors e; € R™, as the vectors with 1 in the i-th entry and zero everywhere
else. That is

e;=0--0_1 0---0) (144)

See that for u € R™, we can write u = Z? W€ -

Definition 48 (Linear Span). Let S = {u;,i € [k]} be set of vectors in R™, then the set of all linear

combinations of u;,i € [k], that is
k
{Zcu |Vi € [K],ci GR} (145)
is called the linear span of set S and is denoted as span(S) or span{uy,- - ug}.

See that we may express spans in different ways. For instance, a set V = {(2a+b,a,3b—a)|a,b € R}
can be written as span{(2,1,-1), (1,0, 3)}.

Exercise 31. Show that
V = span{(1,0,1),(1,1,0),(0,1,1)} = R3. (146)

Proof. V.= R? if we may write arbitrary vector (z,y,z) as a linear combination of elements in the
spanning set of V' (we formally define this later, but treat this for now to be the three vectors given).
That is, Ja, b, ¢ s.t.

a(1,0,1) +b(1,1,0) + ¢(0,1,1) = (x,y, 2), (147)

and this corresponds to augmented matrix system

11 0ia 110 =z
001 1y BB 0y . (148)
1 0 1z 00 2 z—x+y

This system is consistent regardless of the values of x,y, 2. On the other hand, supposed we performed
Gaussian Elimination and obtain zero row on the LHS, that is the coefficient matrix. Then, it is possible

for the last column to be a pivot column and for the system to be inconsistent (Result . O
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We may generalize Exercise [31]to a more general question of whether a set of vectors span the entire

Euclidean space R™.

Corollary 2. For set S = {u;,i € [k]} € R™, S spans R™ iff for arbitrary vector v € R™, the linear system
represented by the augmented matriz (Deﬁnition@ is consistent, where (A|v) and A is coefficient matriz
created from horizontally stacking the column vectors u;,i € [k]. This is immediately made obvious if we
consider the discussion inside the matriz representation for linear systems in Definition[33 By Theorem
@, if REF(A) has no zero row, then the linear system is always consistent. Otherwise, the system is not

always consistent and span(S) # R™.

Theorem 26 (Cardinality of a Set and Its Spanning Limitations). For set S = {u;,i € [k]} be set of

vectors in R™, if k < n, then S cannot span R™.

Proof. Since the coefficient matrix obtained from stacking k columns is size n X k, then the result follows
directly from Theorem O

Theorem 27 (Zero Vector and Span Closure). Let S = {u;,i € [k]} CR™. Then,
1. 0 € span(S).
2. For any v; € span(S) and ¢; € R,i € [r], D! ¢;v; € span(S).

Proof. -
1. See that 0 =), Ou; € span(S).

2. For each v € span(S), they are linear combination of u;,i € [k]. Then we may express

v1 = ayiul + -+ apu, (149)
vy = agiuy + -+ aggug, (150)
(151)
Vp = AprU1 + - F QrpUg, (152)
(153)

so that for linear combination
v+ F+eu, = (c1a11 + cea1 + -+ ¢rar1)Un (154)
+(cra12 + caa22 + -+ - + Crar2)ug (155)
+ (156)
+(cra1x + co2a + - - - + Crarg ) ug. (157)

See this is in span(S).

O

Theorem 28 (Spanning Set of a Set Span). For S1 = {u;,i € [k]}, S2 = {v;,j € [m]} CR", span(S1) C

span(Sa) iff for all i € [k], u; is a linear combination of vj,j € [m].

Proof. —: Assume span(S1) C span(Sz), then since S; C span(S1) C span(Sz), each w; is linear
combination of v’s.

+: Assume Vi € [k],u; is linear combination of v’s. Then, u; € span(S2), Vi € [k]. By Theorem any
w that is linear combination of these u’s can rewritten as linear combination of the v’s, which is itself in

span(S2). Then we are done. O
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Exercise 32. Discuss how one may approach to see if for some set S, Sa, whether span(Sy) C span(Ss).

Proof. Let the vectors in Sy be denoted u;, i € [n] and in Sy be denoted vj, j € [m]. Then in order to see if
each u; may be represented as a linear combination of the v;’s, we may simultaneously solve for multiple
linear systems. These linear systems may be represented by an augmented matrix (V|ug|ug - - |ug), and
by Gaussian Elimination we are able to check if any of the systems (V|u;),¢ € [n] are not consistent. V
here is obtained by horizontally stacking the column vectors for v;. This follows from the discussion made

in Definition [33] on constant matrix as linear combinations of the columns in the coefficient matrix. O

Theorem 29 (Redundant Vectors). Let S = {u;,i € [k]} € R"™, and if 3j € [k] s.t. u; is linear

combination of vectors in S\uj, then span(S) = span(S\u;).
Proof. The proof follows directly from applying Theorem O

Let u, v be two nonzero vectors. Then span{u,v} = su+tv, Vs,t € R. If it is not the case that u//v,
then span{u,v} is a plane containing origin. In R? space, the span is just the entire space. In R?, the

span can be written
span{u,v} = {su+tv|s,t, € R} = {(x,y,2) | ax + by + cz = 0}, (158)

where (a, b, ¢) is solution to the system of two linear equations uja + ugb + ugc = 0,v1a + v2b + vsc = 0
for u = (ug,us,us),v = (v1, va,v3).
For a line in R%, R3, see that any point on the line may be represented by a point z plus some vector

u that is scaled. That is, the line may be written by some

L

{z+tu|t e R} (159)
{z +w|w e span(u)}. (160)

On the other hand, for some plane in R?, and « non-parallel to v, we may represent plane

P = {z+su+t+tv]|steR} (161)
= {z+w|w e span{u,v}}. (162)

A generalization of this statement can be made in R™. That is,
1. for z,u € R™, u # 0, the set
L={x+w|w e span{u}} (163)
is a line in R™.
2. For z,u,v € R™, u.v # 0, and u # kv for some k € R, then the set
P={z+w|we span{u,v}} (164)
is plane in R”.
3. Take x,uq,us, - u., € R the set
Q={z+w|wespan{uy,--- ,u.}} (165)

is a k-plane in R™ where k is the dimension of the span{uy,--- ,u,}. Dimensions of vector spaces
are introduced in Section B.1.3.6
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3.1.3.3 Subspaces

Definition 49 (Subspace). For V. C R, V is subspace of R™ if V. = span(S),S = {uy, -+ ,ur} for
some vectors uic(r) € R". We say that V' is the subspace spanned by S. We say that S spans V. We say
that wy,us,- -+ ,ug span V. We say that S is the spanning set for V.

Definition 50 (Zero Space). From Deﬁnition and Theorem see that 0 € R™ spans the subspace

that contains itself, that is span{0} = {0}. This is known as the zero space.

Recall the vectors e;’s defined as in (Definition [47). For vectors e;,i € [n] € R", see that for all
w=(u1, - ,u,) € R", we may write u = Y. u;e;, so it follows that R" = span({e1,--- ,e,}). Trivially,
R™ is subspace of itself. In abstract linear algebra texts, the definition of subspace is relaxed to permit
abstract objects and are usually provided as follows (see that Theorem [27| holds under this definition):

Definition 51 (Subspace). Let V' be non-empty subset of R™. Then V is subspace of R™ iff
Yu,v € V,Ve,d € R, cu+dveV. (166)

Theorem 30 (HLS Solution Space). The solution set of a HLS (Definition[18) in n variables is subspace
of R™. We call this the solution space of the HLS.

Proof. Let the matrix representation of the HLS be Az = 0. If the HLS only has trivial solution, then
the solution space is spanned by the trivial solution and is the zero space. Next, if it has non-trivial
solution, then it has infinitely many solutions (see Lemma. Then by Deﬁnition we may let solutions
T = Z?COlS(A) a; where a; is column vector of the coefficient matrix A. That is, the solution space is

spanned by the columns of A, and is therefore subspace of R". O

If we solve some linear system and arrive at the general solution, it is easy to find the spanning

vectors. For instance, let the general solution be

2s — 3t 2 -3
(167)

[S NS
I
»
I
»
—_
—+
~
)

The solution space is therefore {(2s — 3t,s,t) | s,t € R} = span{(2,1,0),(-3,0,1)}.

3.1.3.4 Linear Independence

We saw the concept of vector redundancy in a spanning set in Theorem Here, we give formal

treatment to such vectors with the concept of linear independence.

Definition 52 (Linear (In)Dependence). For set S = {u;,i € [k]} € R™, consider Zf ciu; = 0, for

ci € R,i € [k]. This has a HLS representation (Deﬁnitz’on@ where the coefficient matriz U is obtained
C1

from stacking the vectors horizontally, s.t U = (u1 uk) and ¢ = | --- | is the variable matriz.
C

Then see that the zero solution satisfies the system always. The set S is said to be linearly independent

and uy, -+ ,up are said to be linearly independent if the HLS only has the trivial solution. Otherwise,

Jaiep) # 0 and Zf a;u; = 0; a non-trivial solution exists. Then S is a linearly dependent set and

Uy, - ug are said to be linearly dependent vectors. For brevity, we use the notations

LIND(S) = LIND{uy,uy, -+ ,uz} (168)
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to indicate linear independence and
—-LIND(S) = -LIND{uj,us,--- ,ur} (169)
to indicate linear dependence.

Let S = {u} be a subset of R™, then S is linearly dependent iff v = 0. For S = {u,v} C R", S
is linearly dependent iff u = av, for some a € R. If 0 € S for arbitrary S € R", it must be linearly
dependent.

Theorem 31 (No Redundancy of Linearly Independent Set). Let S = {u;,i € [k]} C R™ where k > 2.
Then, S is linearly dependent iff i € [k] s.t. u; is a linear combination of vectors in S\u;. FEquivalent
statement by the iff condition is that S is linearly independent iff no vector in S may be written as linear

combination of the other vectors.

Proof. —: If LIND(S), then .. a;u; = 0 has non-trivial solution by Definition Without loss of
generality, let a; # 0, then

ai a2 aj—1 Qi41 (95
U Uj_1 — Ujpl —  *+ — —U. (170)
a;  a; a; a; a;

We have showed directly that u; is l.c of the other vectors. <—: If Ju; = Zf i QU for some real numbers

aje(k],j»i- Then let a; = —1, for which we have
aur - F 11 + AU+ G Ui - AU (171)
= U — U (172)
=0. (173)
So we have found some non-zero solution, and hence by definition, S must be linearly dependent. O

Recall Theorem [26| on the minimum size of a spanning set required for R". Here we give statements

that allow us to determine the maximum size of the spanning set for R™ that is linearly independent.
Theorem 32. Let S = {u;,i € [k]} € R™. If k > n, then S is linearly dependent.

Proof. The proof follows immediately by seeing that the HLS representation by stacking columns of u
has non-trivial solutions by Lemma [2] S is linearly dependent by Definition [52| as a result. O

Theorem 33 (No Redundancy of Non-Linearly Combinable Element). Let u;,i € [k] be linearly inde-
pendent vectors in R™. Ifugi1 € R™, and it is not l.c. of u;,i € [k], then {u;,i € [k]}U{ugt1} is linearly

independent.

Proof. We show that the vector equation

k+1

> e =0 (174)

has only trivial solution. See that ¢;,i € [k] must be zero by itself in the HLS in k variables by assumption
and definition for linear independence (Definition . We just need to show that cxy; = 0. Suppose
not, then we may write

k

(&5
U = =Y —, (175)

iz Gkl

and this is a contradiction since we assumed no linear combination is possible. So, ci1 must be zero.

Therefore, the HLS represented for u;, i € [k + 1] must have only the trivial solution. O
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3.1.3.5 Bases

Definition 53 (Vector Spaces and Subspaces of Vector Space). A set V' is vector space if either V. =R"
or V is subspace (Definition of R™ for some n € ZT. For some vector space W, the set S is

subspace of W if S is a vector space contained inside W .

We may be interested in finding the smallest set possible s.t. all vector in some vector space V' may

be represented as a linear combination of the elements in the set.

Definition 54 (Basis). Let S = {uy,us, - ,ur} be subset of a vector space V' (Definition , Then we
say that S is a basis for V if (i) S is linearly independent (Definition[52) and (ii) S spans V (Definition
@). When V = {0}, the zero space, set ) to be the basis.

That is, a basis for a vector space V must contain the smallest possible number of elements that
can span V, since it must have no redundant vectors. Recall from Theorem [28] that for vector space V
spanned by some set S, if all elements in S may be represented by some linear combination of vectors in
S, and S is linearly independent, then S must be basis for span(S) = V by definition of basis (Definition

5).

Theorem 34 (Unique Representation of Elements on Basis). If S = {u;,i € [k]} is basis for vector

space V| then Yv € V|, v has unique representation v = Zf Cil; .

Proof. Suppose 3cick), djcr) st v = Zle Ciu; = Z?Zl d;u;, then by subtracting the two equations,
get

(Cl — dl)ul + (C2 — dg)’LLQ + -+ (Ck — dk)uk =0. (176)

But since S is linearly independent (it is basis), the only solution is the trivial solution, so Vi € [k],¢; =
d;. O

By Theorem we should be able to specify an arbitrary vector in some vector space w.r.t to the

coefficients of the l.c. on its basis.

Definition 55 (Basis Coordinates). Let S = {u;,i € [k]} be basis for a vector space V and v € V, then
since v may uniquely expressed by some c;,i € [k] (by Theorem as v = Zf ciu;, we say that the
coefficients c; are coordinates of v relative to basis S and call the vector (v)g = (c1,c2,--- ,cx) € RF the

coordinate vector of v relative to basis S.

To find the coordinate vector of some v relative to some basis S, we may simply solve for the linear
system Sz = v, where S is coefficient matrix obtained by stacking the column vectors of elements of .
We give formal definition for a collection of vectors that we denoted e; (Definition [A7).

Definition 56 (Standard Basis). Let E = {e;,i € [n]} where e; is the vector of all zeros, except for a
single entry of one in the ith-coordinate. Then it is easy to see that E spans R™, and that LIND(E). E

is basis for R™. In particular, we call this the standard basis, and see that
(e = (u1,- un) = u. (177)

Corollary 3. By Definition [55, for basis S of V, Yu,v € V, u = v iff (u)s = (v)s. Additionally, by
Deﬁnitz’on Yicir) €V, Ciepr) € R, see that

(crv1 + cova + -+ cpvp)s = c1(v1)s + ca(v2)s + -+ - + e (vr) s (178)
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Theorem 35 (Linear Dependence Duality). Let S be basis for vector space V (Deﬁm’tion , and
|S| =k. Let v; € V)i € [r], then

1. LIND({v;,i € [r]}) <> LIND({(v;)s,i € [r]}) for vectors (v;)s € RE.
2. spanf{v;,i € [r]} =V iff span{(v;)s,i € [r]} = R*.
Proof. -

1. By Corollary |3 we can write Y ; c;o; = 0 < (3; civi)s = (0)s <> Y. ¢i(vi)s = (0)s, where
(0)s € R*. The first equality has non-trivial solution iff the last equality has the non-trivial

solution and we are done.
2. Assume S = {u;,i € [k]}. —: Assume span{v;,i € [r]} = V. Then by closure (Theorem and
basis definitions (Definition , we may write

k T
Ya = (ay,--- ,ax) € RF, w::ZaiuiEV:chvj (179)
i J

for some constants c;, j € [r]. By basis coordinate (Definition and Corollary 3} we may write
a=(w)s=(crv1+ - +cv)s =ci(v1)s+ -+ cr(vr)s. (180)

Then it follows that (v;)s,i € [r] spans R¥. +—: On the other hand, suppose span{(v;)s,i € [r]} =
R*. See that Yw € V, (w)s € R* so Je;,i € [r] s.t.

T

(w)s = Zci(vi)s = (Z Civi)s, (181)

and therefore w = Y. ¢;v; by Corollary [3| Since we picked arbitrary w, we are done.

3.1.3.6 Dimensions

Theorems and give statements of the number of elements required for a basis for a vector space
that is R* - here we use the duality given by Theorem to make comments on arbitrary real vector

space V.

Theorem 36 (Vector space has fixed size basis). Let V' be vector space with basis S, |S| = k. Then
1. Any subset of V' with more than k vectors is always linearly dependent, and
2. Any subset of V' with less than k vectors cannot span V.

Proof. -

1. Let T = {w;,i € [r]} C V, and r > k. Then their coordinate vectors (v;)s are set of r vectors in
R* and since r > k, by Theorem (vi)s, % € [r] is linearly dependent, then by duality (Theorem
it follows that ~LIND(T).

2. Let Q = {v;,i € [t]},C V and t < k, then (v;)s,7 € [t] may not span R* (Theorem and @
cannot span V by duality (Theorem .
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Theorem [36] gives us a metric for the ‘size’ of a vector space. We formalize this with dimensions.

Definition 57 (Dimensions, dim). The dimension of a vector space V, denoted dim(V') is the number
of vectors in any basis for V. Since zero space has basis O (Definition , dim(0) = 0.

We can see that the dimension of a vector space denote the concept of degrees of freedom. Consider
the subspace W = {(z,y, z)|y = z}. We may write Vw € W,w := (z,y,y) = 2(1,0,0) + y(0,1,1), s.t.
W = span{(1,0,0),(0,1,1)}. Additionally, (1,0,0),(0,1,1) are linearly independent and so they form
basis. dim(W) = 2.

Exercise 33 (Finding the Nullity and Basis of a HLS Solution Space). By considering the (R)REF of an
HLS (Definition @), it is easy to see that the dimension of the solution space is the number of non-pivot
columns (Deﬁnition@) in the (R)REF form. To see this, suppose that the RREF representation of some

HLS in variables (v, w, z,y, z) may be written to be

1100 1:0
0010 10
1 , (182)
000100
000000
then by back substitution (Ezercise , see that the linear system may have general solution
v —s—1 -1 -1
w s 1 0
x| = —t =s| 0 |+t]-1 (183)
Y 0 0 0
z 0

for s, t € R. Then see that the dimension of the solution space is 2, and in fact we found the basis for the
solution space {(—1,1,0,0,0),(—1,0,—1,0,1)}. This solution space is known as the nullspace, and we
have found the basis of the nullspace. The cardinality of this basis is known as the nullity. The nullspace,
basis, and nullity are discussed later in Definition 64}, Definition[5]] and Definition [63] respectively.

Theorem 37. Let V' be vector space, dimension k (Definition and S C V. The statements are

equivalent for:
1. S is basis for V.
2. LIND(S) A |S| = k.
3. S spans V and |S| = k.

That is, if we know |S| = k, we only need to check if span(S) =V or LIND(S) to show it is basis for
V.

Proof. The statements for 1 — 2,1 — 3 follow from Theorem [36] Additionally, to show 2 — 1, assume
S is linearly independent and |S| = k. Suppose it is not basis for V', then take the vector u € V A u ¢
span(S). Then by Theorem S" = SU{u} is set of k + 1 linearly independent vectors, and Theorem
asserts the contradiction. To show 3 — 1, assume S spans V, |S| = k and suppose S is not basis.
Then Jv € S s.t. v = Zsies\v ¢;s; for some constants ¢; € R, and S := S\v is set of k — 1 vectors where
span(S) = span(S) = V by Theorem Theorem |36| asserts the contradiction. O
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Theorem 38 (Dimension of a Subspace). Let U be subspace (Definition @) of vector space V. Then
dim(U) < dim(V'). In particular, U #V = dim(U) < dim(V').

Proof. Let S be basis for U, so S C U C V and since it is basis, S is linearly independent subset of V.
By part 1, Theorem since S is linearly independent, it must not have more than k = dim (V') vectors,
that is dim(U) = |S| < dim(V). On the other hand, assume |S| = dim(U) = dim(V'), then Theorem
asserts that the linear independence of S and set cardinality makes V = span(S) = U. So we have

shown that
dim(U)=dim(V) = U=V (184)

Since (dim(U) < dim(V)) A (dim(U) > dim(V)) <> dim(U) = dim(V'), we have effectively showed the

contrapositive of the statement, and by logical equivalency we are done. O

Theorem 39 (Invertibility of Square Matrices, 2). If A is square matriz order n, then the following

statements are equivalent:
1. A is invertible.
2. Az = 0 has only the trivial solution.
3. RREF of A is identity 1 matriz.
4. A can be expressed as II} E;, where E; are elementary matrices.
5. det(A) #0.
6. Rows of A form basis for R™.
7. Columns of A form basis for R™.

Proof. See proof in Theorem [L1] for the iff conditions for statement 1 <> 4. 1 <+ 5 is proved by Theorem
6 <> 7 by Theorem [I0]- rows of A are columns of A’ and A invertible iff A’ is invertible. We are done
if we show any i € [5] <> 7. We show 2 <> 7. If Az = 0 only has trivial solution, then the columns are
linearly independent by the statements given in Definition There are n columns. Then by Theorem
{a1, a9, - a,} where a; is i-th column of A is basis of R™. O
3.1.3.7 Transition Matrices

Definition 58 (Row/Column Vector Representation of Basis Coordinates). Recall that for basis S =
{ui,i € [k]} of vector space V and v € V, v has unique coordinate vector representation (Definition [55,
Theorem written

(v)s = (c1, - ,ck) (185)
and we write also write this as a column vector
C1
(186)

[v]s =

Ck
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It is trivial that bases are not unique. For two bases S,T spanning vector space V, we may be

interested in the relation [w]g ~ [w]y. This relation is captured by the transition matrix. In particular,

C1
let S = {u;,i € [k]},T = {v;,i € [k]} and some w € V be written w = >_ c;u; s.t. [w]s = @ , then
Cr
since each u;’s may be represented by the vectors in T', suppose
Vi € [k], U; = A1;U1 + AoV + * + + + AR Vk. (187)
atq
That is, each u; € [k] has T-basis coordinate representation [u;]7 = “21 | and see that
Qs
k
w= Z(Clajl + a0 + -+ crak) vy (188)
J
That is,
cia11 + C2a12 + - CrpQik
oy = C1G21 + C2a22 + -+ - - C A2k _ <[u1]T o]y - [uk]T> [w]s. (189)
C1Gk1 + Coak2 + - - CrQkk
Define P = ([Ul]T [ug]r - [uk]T>, then [w]r = Plw]g for all w € V and we call P the transition
matrix.
Definition 59 (Transition Matrix). Let S = {uy, - ,ur} and T be two bases for vector space. Then
P = ([u1]r -+ [uk]r) is said to be transition matriz from S to T, and [w]r = Plw]s holds for allw € V.

We may find the transition matrix by the Gaussian Elimination (or Gauss Jordan) algorithm discussed
in Theorem [5| and using the interpretations for linear systems as in Definition For two bases S =
{us, i € [k]}, T = {v;,1 € [k]} respectively, we solve for the system with augmented matrix representation
(Definition [9) (T'|u1|uz - - - |ug,), where T is coefficient matrix obtained from stacking column vectors v,
i € [k]. Then the column vectors on the RHS of the RREF augmented matrix are the weights for the
linearly combined columns of T. In fact, the RHS of the augmented matrix from the first | onwards is

precisely the transition matrix P : [w]g — [w]r.

Theorem 40 (Properties of the Transition Matrix). Let S, T be two bases of vector space V and P be

transition matrixz from S — T, then
1. P is invertible and
2. P71 is the transition matriz from T — S.

Proof. Tt is easy to both logicize this argument and to prove it. Note that for S = {u;,7 € [k]}, the
vectors [u;]s,? € [k] is standard basis (Definition in R¥. Let @ be transition matrix from T to S.
Then see that for ¢ € [k], the i-th column of QP is written QP[u;]s = Q[u;]r = [u;]s. Then stacking the

columns [u;]g, i € [k] gives us 1. O
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