
Making a Streamlit Dashboard for our Trade Executor

HangukQuant1, 2*

November 2, 2022

1 2

Abstract

We make a dashboard to analyse trade statistics from the order executor built in previous

work, and as means to diagnose the health of our trading system and positional status.

1*1: hangukquant@gmail.com, hangukquant.substack.com
2*2: DISCLAIMER: the contents of this work are not intended as investment, legal, tax or any other advice, and

is for informational purposes only. It is illegal to make unauthorized copies, forward to an unauthorized user or to

post this article electronically without express written consent by HangukQuant.

1

1 Introduction

As before, the same caveat applies - this is a result of weekly musings - there are bound to be

mistakes. Please email all errors/issues to hangukquant@gmail.com or tweet me at @HangukQuant.

In the previous works, we built a trade order executor using the MetaAPI service, and after

generating some log data, we wrote it onto a Mongo instance using a database service we pro-

grammed. Here we analyse the trade logs. We also conclude our engineering series before moving

on to quantitative research work.

Before we sign off on the engineering series, I want to lay down some notes. First, it has both

been an absolute pleasure and pain to think and write the code out by hand and think about how to

bring these different components together to relay to my readers. There are some things I did not

anticipate, such as the difficulty of bringing together content from different software components

- each paper requires some knowledge and implementation detail from past works, and cannot be

understood in isolation. This is particularly so if the reader is not able to abstract away the details

and share my vision for the overall code architecture. In that sense, the complexity of the work was

more challenging on the reader than it needed to be, although I suspect that without the software

interactions, the individual components themselves are already somewhat sophisticated and require

deeper understanding of the Python mechanics.

My intention was to elevate the reader’s knowledge in both finance and programming (python/-

computer science), and I suspect that readers who take the painstaking work of going through each

paper and understanding the details will in fact manage this goal. However, the layered complexity

will also throw many readers off and many will quit in vain. I think the fault is half-half - it is my

job to simplify it and yours to stretch your mind. Perhaps in future iterations, I will do better. I

am fairly certain that our content is somewhat unique in both the depth and difficulty of content

out there in systematic trading. While I have no intention on pulling back, I do think we have miles

to go in terms of being a better communicator. I also appeal to readers an important note once

again - the purpose of us releasing code this year is not such that you can just ‘run em and voila’.

It is such that we can include scientific and hard explanations instead of high-level discussion and

argument such that our concepts are clearer to the UNDERSTANDING. A significant proportion

of the code we share will NOT run ‘as is’, since the imported libraries and services we use might

2

have been modified since the last time we wrote a paper on it. We will likely not update readers

on these modifications. The development and engineering process is yours and yours only.

With that said, a significant proportion of the code WILL also work perfectly. Essentially, what

I mean is this: you will only know if the code works perfectly or not by understanding the code. If

you copy and paste some code and you are not sure if it works - it means you lack understanding.

I also copy and paste from Stack Overflow all the time, but I make sure I understand what it is

I am putting in my code. I have no issue with your ctrl-C ctrl-V either. The copy and paste is a

convenience function conditional on you already having the conceptual knowledge. If you copy and

paste blindly, it will never work anyway.

1.1 A Note of Precaution

There is absolutely no warranty or guarantee implied with this product. Use at your own risk. I

provide no guarantee that it will be functional, destructive or constructive in any sense of the word.

Use at your own risk. Trading is a risky operation.

1.2 Desired Behavior

First, recall how we submitted our logs to our database. Refer to previous work [1] for the executor

code. The relevant parts for the different hierarchies of logging was execution window:

series_metadata = {"exec_level" : "window"}

series_identifier = {"type": "execution_log", **series_metadata}

for execution batch:

doc_identifier = {"type": "execution_log", "batch_stamp": batchstamp}

and for a single order:

doc_identifier = {"type": "execution_log", "order_stamp": f"{batchstamp}/{ticker}"}

In particular, we stored the execution window in a time series collection and the remainder of

the logs in regular document collections in our NoSQL Mongo database. We need to be able to

retrieve it. This is simple, since our database service handles all of these.

3

1 data_receiver = db_service.DbService ()

2 async def get_window_logs(start=None , end=None):

3 series_metadata = {"exec_level" : "window"}

4 series_identifier = {"type": "execution_log", ** series_metadata}

5 res_range , df = await data_receiver.asyn_read_timeseries(

6 dtype="log",

7 dformat="tsexec",

8 dfreq="o",

9 period_start=start ,

10 period_end=end ,

11 series_metadata=series_metadata ,

12 series_identifier=series_identifier

13)

14 return df

15

16 async def get_batch_logs(batchstamp):

17 batch_doc = await data_receiver.asyn_read_docs(

18 dtype="log",

19 dformat="docexec",

20 dfreq="o",

21 doc_identifier ={"type": "execution_log", "batch_stamp": batchstamp},

22 metalogs=""

23)

24 data = batch_doc [2]

25 return data

26

27 async def get_ticker_logs(batchstamp , ticker):

28 ticker_doc = await data_receiver.asyn_read_docs(

29 dtype="log",

30 dformat="docexec",

31 dfreq="o",

32 doc_identifier ={"type": "execution_log", "order_stamp": f"{batchstamp }/{

ticker}"},

33 metalogs=""

34)

35 return ticker_doc [2]

Listing 1: retrieving data

4

These functions retrieve the log records from our database! The code for the data receiver is

from our database service code.

What we want is the ability to have the overall view of our executor logs, pick certain date

ranges to zoom into. When looking at the execution logs within a date range, we want the ability

to choose a particular date, and see with one look whether we have any issues in the execution

performance. If there are issues with a particular order, we can check what batch of trade orders

it belongs to, zoom in on the batch to check the textual logs. If there is no issue with the batch,

we want to see the individual trade logs, and have a play-by-play of the position and order table

of our books back in time when the execution was performed.

Let’s first take a snapshot of what we will be building:

Figure 1: Hierarchical Visualization to View our Executor Logs

5

F
ig
u
re

2:
E
x
ec
u
to
r
L
og

P
ag

e

6

F
ig
u
re

3:
E
x
ec
u
to
r
T
ab

le

7

F
ig
u
re

4:
E
x
ec
u
to
r
B
at
ch

8

F
ig
u
re

5:
E
x
ec
u
to
r
O
rd
er
,
1

9

F
ig
u
re

6:
E
x
ec
u
to
r
O
rd
er
,
2

10

F
ig
u
re

7:
E
x
ec
u
to
r
O
rd
er
,
3

11

2 Implementation

Let’s go ahead and write the code out. To use streamlit’s features, we can simply do

python3 -m pip install streamlit

python3 -m streamlit run myexecutorpage.py

Streamlit allows us to use markdowns, automatically formats dataframes, dictionaries and so

on. We will not go into their documentation, but I encourage interested readers to read up on their

documentation.

There is also a book https://www.amazon.com/Getting-Started-Streamlit-Data-Science/dp/180056550X:

Getting Started with Streamlit for Data Science: Create and deploy Streamlit web applications from

scratch in Python which details writing and deploying streamlit apps step-by-step. We will just

integrate it and use the code, so that interested readers can reference.

First, a config toml file for streamlit to see our dark blue theme. This goes in the path

‘.streamlit/config.toml’ from our root directory.

[theme]

Accepted values (serif | sans serif | monospace)

font = "serif"

primaryColor = "#ffc8c8" #red

backgroundColor = "#282b34" #dark blue

secondaryBackgroundColor = "#282b34"

textColor = "#FFFFFF"

We begin by importing some libraries, instantiating some theme constants and our data service.

1 import pytz

2 import asyncio

3 import pandas as pd

4 import numpy as np

5 import streamlit as st

6

12

https://www.amazon.com/Getting-Started-Streamlit-Data-Science/dp/180056550X

7 import plotly.express as px

8 import plotly.graph_objects as go

9

10 from datetime import datetime

11 from data_service.db import db_service

12

13 if __name__ == "__main__":

14 st.set_page_config(

15 layout="wide"

16)

17

18 elevated_blue = "#454 a59"

19 deep_blue = "#282 b34"

20 white_red = "#e97770"

21 black_red = "#ffc8c8"

22 white_green = "#2a8e34"

23 black_green = "#c8ffcd"

24 white_yellow = "#FFB055"

25 st.markdown("### Execution Logs")

26

27 st.write("")

28 st.write("")

29 st.write("")

30

31 data_receiver = db_service.DbService ()

As seen, we have primarily three sections in our page. We can just write them in linear fashion,

which makes our code really easy to compartmentalize.

1 async def main():

2 with st.spinner(’Getting Execution Report ...’):

3 df = await display_window_logs ()

4

5 st.write("")

6 st.write("")

7

8 with st.spinner("Getting Batch Reports ..."):

9 batchstamp , batch_tickers = await display_batch_logs(df)

13

10

11 st.write("")

12 st.write("")

13

14 with st.spinner("Getting Order Reports ..."):

15 await display_order_logs(batchstamp , batch_tickers)

16

17 if __name__ == "__main__":

18 asyncio.run(main())

We will be working with dataframes often, so let’s just create a utility function to format a

dataframe nicely into plotly tables with arbitrary dataframes.

1 def make_fig(df , title , height , color_df=None):

2 if color_df is None:

3 color_df = pd.DataFrame ().reindex_like(df).fillna(deep_blue)

4 fig = go.Figure(

5 data=[

6 go.Table(

7 header=dict(

8 values=df.columns ,

9 font=dict(size=12, color = ’white ’),

10 fill_color = ’#454 a59’,

11 line_color = ’#454 a59’,

12 align = [’left’,’center ’],

13 height =30

14),

15 cells=dict(

16 values = [df[K]. tolist () for K in df.columns],

17 font=dict(size =12),

18 align = [’left’,’center ’],

19 fill_color = [color_df[K]. tolist () for K in color_df.columns],

20 line_color = [color_df[K]. tolist () for K in color_df.columns],

21 height =20)

22)

23]

24)

25 fig.update_layout(title_text=title , title_font_color = ’white’, title_x=0,

14

margin= dict(l=0,r=10,b=20,t=30), height=height)

26 return fig

Now, we just need to implement the plotting, sorting and filtering functionality we provided

to the user.

1 async def display_window_logs ():

2

3 date_picked = st.sidebar.date_input(">>> PICK DATE RANGE TO SEE ", [datetime

(2022 , 1, 1), datetime.now(pytz.utc)])

4 pick_start = date_picked [0] if len(date_picked) >= 1 else None

5 pick_end = date_picked [1] if len(date_picked) == 2 else None

6 pick_start = datetime(pick_start.year , pick_start.month , pick_start.day) if

pick_start else pick_start

7 pick_end = datetime(pick_end.year , pick_end.month , pick_end.day + 1) if

pick_end else pick_end

8 pick_start = pytz.utc.localize(pick_start) if pick_start else None

9 pick_end = pytz.utc.localize(pick_end) if pick_end else None

10

11 df = await get_window_logs(start=pick_start , end=pick_end)

12

13 if df.empty:

14 st.write("No execution data to see.")

15 st.stop()

16

17 df = df.iloc [:: -1]. reset_index(drop=True)

18 executed_groups = df.groupby("datetime")

19 group_list = list(executed_groups.groups.keys())

20 selected_opt = st.sidebar.selectbox("> Showing: ", ["all"] + group_list)

21 if selected_opt != "all":

22 df = executed_groups.get_group(selected_opt)

23

24 df["tot_cost (esc)"] =

25 df["execution_spread_penalty"] + df["slippage"] + df["comm"]

26

27 display_df = df[["datetime", "batch", "ticker", "pre", "target", "target_round

", "post", "inertia", \

28 "market_spread_penalty", "execution_spread_penalty", "slippage", "comm", "

15

tot_cost (esc)", "received_price", "peek_ba"]]

29

30 display_df [["target", "market_spread_penalty", "execution_spread_penalty", "

slippage", "tot_cost (esc)"]] \

31 = display_df [["target", "market_spread_penalty", "execution_spread_penalty

", "slippage", "tot_cost (esc)"]]. round(decimals =5)

32

33 display_df = display_df.rename(columns ={"market_spread_penalty":"exec_cost@mkt

", "execution_spread_penalty": "exec_cost@act"})

34

35 sort_by = st.sidebar.selectbox("> Sorted By: ", ["-"] + list(display_df.

columns))

36 if sort_by != "-":

37 display_df = display_df.sort_values(by=sort_by)

38 df = df.loc[display_df.index]

39

40 color_df = pd.DataFrame ().reindex_like(display_df).fillna(deep_blue)

41 exec_diff = display_df["exec_cost@act"] - display_df["exec_cost@mkt"]

42 color_df["exec_cost@act"] = exec_diff.apply(

43 lambda diff: white_red if diff < 0 else (white_yellow if diff > 0 else

deep_blue)

44)

45 color_df["exec_cost@act"] = np.where(

46 display_df["exec_cost@act"] > 0, white_green , color_df["exec_cost@act"]

47)

48 color_df["slippage"] = display_df["slippage"].apply(

49 lambda slip: white_green if slip > 0 else (white_red if slip < 0 else

deep_blue)

50)

51

52 color_df["post"] = np.where(

53 np.logical_and(display_df["target_round"] != display_df["post"], df["

is_overriden"]),

54 white_red ,

55 deep_blue

56)

57 color_df["tot_cost (esc)"] = display_df["tot_cost (esc)"].apply(lambda cost:

16

white_green if cost > 0 else deep_blue)

58 color_df["tot_cost (esc)"] = np.where(

59 np.logical_and (~df["is_overriden"], display_df["tot_cost (esc)"] < 0),

60 white_red ,

61 color_df["tot_cost (esc)"]

62)

63 color_df["tot_cost (esc)"] = np.where(

64 np.logical_and(df["is_overriden"], display_df["tot_cost (esc)"] < 0),

65 white_yellow ,

66 color_df["tot_cost (esc)"]

67)

68

69 display_df = display_df.fillna("-").reset_index(drop=True)

70 fig = make_fig(df=display_df , title=f"Execution Summaries {pick_start.date()}

~ {pick_end.replace(day=pick_end.day - 1).date()}", height =640, color_df=

color_df)

71 st.plotly_chart(fig , use_container_width=True)

72

73 st.caption(

74 r’’’

75 1. exec_cost@act is red if execution strategy is worse than fill @market ,

yellow if better than market but still costly , and green if there was money

earned.

76 2. slippage is green if positive and red if negative

77 3. post is red if target position was not hit despite having inertia

overriden

78 4. tot_cost (esc) = exec_cost@act + slippage + comm

79 5. tot_cost (esc) is red if the executor incurred costs on position

without inertia overriden , yellow if cost was incurred on inertia overriden

trade , and green if there was money earned on trade (regardless of positional

inertia)

80 ’’’

81)

82 return df

Now, the batch logs.

1 async def display_batch_logs(df):

17

2 batch_groupdf = df.groupby("batch")

3 group_lists = list(batch_groupdf.groups.keys())

4 batch_selected = st.sidebar.selectbox(">>> CHOOSE BATCH", group_lists , key =2)

5

6 with st.expander(f"See Batch Executor Logs: {batch_selected}"):

7 data = await get_batch_logs(batchstamp=batch_selected)

8 batch_tickers = data["batch_tickers"]

9 c1, c2 = st.columns (2)

10 with c1:

11 st.write("# TICKERS")

12 st.write(f"##### {batch_tickers}".replace("’", "").replace("[", "").

replace("]", ""))

13 with c2:

14 message_df = pd.DataFrame(data["batch_logs"])

15 fig = make_fig(message_df , "Batch Logs", height =200)

16 st.plotly_chart(fig , use_container_width=True)

17 st.write(’’)

18

19 return batch_selected , batch_tickers

and the order logs...

1 async def display_order_logs(batchstamp , tickers):

2 ticker_selected = st.sidebar.selectbox(">>> CHOOSE TICKER", tickers , key=3)

3 with st.expander(f"See Ticker Executor Logs: {ticker_selected}"):

4 data = await get_ticker_logs(batchstamp , ticker_selected)

5 pos_snaps = data["pos_snaps"]

6 ord_snaps = data["ord_snaps"]

7 show_keys_1 = [’ticker ’, ’pre’, ’post’, ’target ’, ’target_round ’, ’inertia

’, ’is_overriden ’]

8 show_keys_2 = [’comm’, ’slippage ’, ’market_spread_penalty ’, ’

execution_spread_penalty ’, ’peek_ba ’, ’received_price ’]

9 show_dict1 = {k : v for k,v in data.items() if k in show_keys_1}

10 show_dict2 = {k : v for k,v in data.items() if k in show_keys_2}

11 st.markdown("## Order Specs")

12 c1, c2 = st.columns (2)

13 with c1:

14 c1.write(show_dict1)

18

15 with c2:

16 c2.write(show_dict2)

17 st.write(’’)

18 st.write(’’)

19 st.write(’’)

20 st.write("## Tickets and Fills")

21 if data["tickets_and_fills"]:

22 st.write(str(data["tickets_and_fills"]))

23 else:

24 st.write("no tickets involved.")

25 st.write(’’)

26 st.write(’’)

27 st.write(’’)

28 st.markdown("## Order Playback")

29 st.write(’’)

30 st.write(’’)

31

32 st.markdown("##### Order Logs")

33 logs = data["order_logs"]

34 log_df = pd.DataFrame(logs)

35 fig = make_fig(log_df , "", height =480)

36 st.plotly_chart(fig , use_container_width=True)

37

38 c1, c2 = st.columns ((1.6 , 2.4))

39

40 with c1:

41 st.markdown("##### Position Snapshots")

42 for pos_snap in pos_snaps:

43 pos_time = pos_snap [0]

44 pos_df = pd.DataFrame.from_dict(pos_snap [1], orient="index").

reset_index ().rename(columns ={"index": "ticket"})

45 pos_df = pos_df.drop(columns="meta") if not pos_df.empty else

pos_df

46 pos_df["type"] = pos_df["type"].str.replace("POSITION_TYPE", "")

if not pos_df.empty else pos_df

47 fig = make_fig(pos_df , str(pos_time), height =480 / len(pos_snaps))

48 st.plotly_chart(fig , use_container_width=True)

19

49 with c2:

50 st.markdown("##### Order Snapshots")

51 for ord_snap in ord_snaps:

52 ord_time = ord_snap [0]

53 ord_df = pd.DataFrame.from_dict(ord_snap [1], orient="index").

reset_index ().rename(columns ={"index": "ticket"})

54

55 if not ord_df.empty:

56 ord_df = ord_df [["ticket", "posid", "left_volume", "

filled_volume", "total_volume", "expiration", "price_at", "open_at", "

order_type"]]

57 ord_df.columns = [col.replace("volume", "v") for col in ord_df

.columns]

58 ord_df["expiration"] = ord_df["expiration"].str.replace("

ORDER_TIME", "")

59 ord_df["order_type"] = ord_df["order_type"].str.replace("

ORDER_TYPE", "")

60

61 fig = make_fig(ord_df , str(ord_time), 480 / len(ord_snaps))

62 st.plotly_chart(fig , use_container_width=True)

3 Concluding Remarks

That wasn’t that hard..., it was just a lot of formatting and calling the write API functions from

streamlit. It is surprisingly powerful, and it took ∼ 300 lines of code to make the executor page! I

hope this was a simple and easy introduction to streamlit, and that this will inspire you to research

further into the technology and come up with your own beautiful dashboards. But remember.

beauty ! = money in trading. Happy trading and see you on the other side.

References

[1] HangukQuant. A Trade Order Executor for Reducing Transaction Costs. https://

hangukquant.substack.com/p/a-trade-order-executor-for-reducing.

20

https://hangukquant.substack.com/p/a-trade-order-executor-for-reducing
https://hangukquant.substack.com/p/a-trade-order-executor-for-reducing

	Introduction
	A Note of Precaution
	Desired Behavior

	Implementation
	Concluding Remarks

